python可视化分析绘制散点图和边界气泡图

Lillian ·
更新时间:2024-11-10
· 1333 次阅读

目录

一、绘制散点图

二、绘制边界气泡图

一、绘制散点图

实现功能:

python绘制散点图,展现两个变量间的关系,当数据包含多组时,使用不同颜色和形状区分。

实现代码:

import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_scatter(file):     # Import dataset     midwest = pd.read_csv(file)     # Prepare Data     # Create as many colors as there are unique midwest['category']     categories = np.unique(midwest['category'])     colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))]     # Draw Plot for Each Category     plt.figure(figsize=(10, 6), dpi=100, facecolor='w', edgecolor='k')     for i, category in enumerate(categories):         plt.scatter('area', 'poptotal', data=midwest.loc[midwest.category == category, :],s=20,c=colors[i],label=str(category))     # Decorations     plt.gca().set(xlim=(0.0, 0.1), ylim=(0, 90000),)     plt.xticks(fontsize=10)     plt.yticks(fontsize=10)     plt.xlabel('Area', fontdict={'fontsize': 10})     plt.ylabel('Population', fontdict={'fontsize': 10})     plt.title("Scatterplot of Midwest Area vs Population", fontsize=12)     plt.legend(fontsize=10)     plt.show() draw_scatter("F:\数据杂坛\datasets\midwest_filter.csv")

实现效果:

二、绘制边界气泡图

实现功能:

气泡图是散点图中的一种类型,可以展现三个数值变量之间的关系,之前的文章介绍过一般的散点图都是反映两个数值型变量的关系,所以如果还想通过散点图添加第三个数值型变量的信息,一般可以使用气泡图。气泡图的实质就是通过第三个数值型变量控制每个散点的大小,点越大,代表的第三维数值越高,反之亦然。而边界气泡图则是在气泡图添加第四个类别型变量的信息,将一些重要的点选出来并连接。

实现代码:

import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import warnings from scipy.spatial import ConvexHull warnings.filterwarnings(action='once') plt.style.use('seaborn-whitegrid') sns.set_style("whitegrid") print(mpl.__version__) print(sns.__version__) def draw_scatter(file):     # Step 1: Prepare Data     midwest = pd.read_csv(file)     # As many colors as there are unique midwest['category']     categories = np.unique(midwest['category'])     colors = [plt.cm.Set1(i / float(len(categories) - 1)) for i in range(len(categories))]     # Step 2: Draw Scatterplot with unique color for each category     fig = plt.figure(figsize=(10, 6), dpi=80, facecolor='w', edgecolor='k')     for i, category in enumerate(categories):         plt.scatter('area','poptotal',data=midwest.loc[midwest.category == category, :],s='dot_size',c=colors[i],label=str(category),edgecolors='black',linewidths=.5)     # Step 3: Encircling     # https://stackoverflow.com/questions/44575681/how-do-i-encircle-different-data-sets-in-scatter-plot     def encircle(x, y, ax=None, **kw):  # 定义encircle函数,圈出重点关注的点         if not ax: ax = plt.gca()         p = np.c_[x, y]         hull = ConvexHull(p)         poly = plt.Polygon(p[hull.vertices, :], **kw)         ax.add_patch(poly)     # Select data to be encircled     midwest_encircle_data1 = midwest.loc[midwest.state == 'IN', :]     encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec="pink",fc="#74C476",alpha=0.3)     encircle(midwest_encircle_data1.area,midwest_encircle_data1.poptotal,ec="g",fc="none",linewidth=1.5)     midwest_encircle_data6 = midwest.loc[midwest.state == 'WI', :]     encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec="pink",fc="black",alpha=0.3)     encircle(midwest_encircle_data6.area,midwest_encircle_data6.poptotal,ec="black",fc="none",linewidth=1.5,linestyle='--')     # Step 4: Decorations     plt.gca().set(xlim=(0.0, 0.1),ylim=(0, 90000),)     plt.xticks(fontsize=12)     plt.yticks(fontsize=12)     plt.xlabel('Area', fontdict={'fontsize': 14})     plt.ylabel('Population', fontdict={'fontsize': 14})     plt.title("Bubble Plot with Encircling", fontsize=14)     plt.legend(fontsize=10)     plt.show() draw_scatter("F:\数据杂坛\datasets\midwest_filter.csv")

实现效果:

到此这篇关于python可视化分析绘制散点图和边界气泡图的文章就介绍到这了,更多相关python绘制内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!



python可视化 边界 Python 散点图

需要 登录 后方可回复, 如果你还没有账号请 注册新账号