python多线程死锁现象及解决方法

Oria ·
更新时间:2024-11-13
· 1370 次阅读

目录

本节重点

一 死锁现象

二 递归锁

本节重点

了解死锁现象与解决方法

本节时长需控制在15分钟内

一 死锁现象

所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。

此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程,如下就是死锁

from threading import Thread,Lock import time mutexA=Lock() mutexB=Lock() class MyThread(Thread): def run(self): self.func1() self.func2() def func1(self): mutexA.acquire() print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire() print('\033[42m%s 拿到B锁\033[0m' %self.name) mutexB.release() mutexA.release() def func2(self): mutexB.acquire() print('\033[43m%s 拿到B锁\033[0m' %self.name) time.sleep(2) mutexA.acquire() print('\033[44m%s 拿到A锁\033[0m' %self.name) mutexA.release() mutexB.release() if __name__ == '__main__': for i in range(10): t=MyThread() t.start()

执行效果

Thread-1 拿到A锁 Thread-1 拿到B锁 Thread-1 拿到B锁 Thread-2 拿到A锁 #出现死锁,整个程序阻塞住 二 递归锁

解决方法,递归锁,在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。

这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。

上面的例子如果使用RLock代替Lock,则不会发生死锁,二者的区别是:递归锁可以连续acquire多次,而互斥锁只能acquire一次

from threading import Thread,RLock import time mutexA=mutexB=RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止 class MyThread(Thread): def run(self): self.func1() self.func2() def func1(self): mutexA.acquire() print('\033[41m%s 拿到A锁\033[0m' %self.name) mutexB.acquire() print('\033[42m%s 拿到B锁\033[0m' %self.name) mutexB.release() mutexA.release() def func2(self): mutexB.acquire() print('\033[43m%s 拿到B锁\033[0m' %self.name) time.sleep(2) mutexA.acquire() print('\033[44m%s 拿到A锁\033[0m' %self.name) mutexA.release() mutexB.release() if __name__ == '__main__': for i in range(10): t=MyThread() t.start()

以上就是python多线程死锁现象与解决方法的详细内容,更多关于python多线程死锁现象解决的资料请关注软件开发网其它相关文章!



死锁 方法 python多线程 线程 Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号