详解Python yaml模块

Elizabeth ·
更新时间:2024-11-13
· 507 次阅读

一、yaml文件介绍

yaml是一个专门用来写配置文件的语言。

1. yaml文件规则

区分大小写; 使用缩进表示层级关系; 使用空格键缩进,而非Tab键缩进 缩进的空格数目不固定,只需要相同层级的元素左侧对齐; 文件中的字符串不需要使用引号标注,但若字符串包含有特殊字符则需用引号标注; 注释标识为#

2. yaml文件数据结构

对象:键值对的集合(简称 "映射或字典")

键值对用冒号 “:” 结构表示,冒号与值之间需用空格分隔

数组:一组按序排列的值(简称 "序列或列表")

数组前加有 “-” 符号,符号与值之间需用空格分隔

纯量(scalars):单个的、不可再分的值(如:字符串、bool值、整数、浮点数、时间、日期、null等)

None值可用null可 ~ 表示

二、python中读取yaml配置文件

1. 前提条件

python中读取yaml文件前需要安装pyyaml和导入yaml模块:

使用yaml需要安装的模块为pyyaml(pip3 install pyyaml); 导入的模块为yaml(import yaml)

2. 读取yaml文件数据

python通过open方式读取文件数据,再通过load函数将数据转化为列表或字典;

import yaml import os def get_yaml_data(yaml_file): # 打开yaml文件 print("***获取yaml文件数据***") file = open(yaml_file, 'r', encoding="utf-8") file_data = file.read() file.close() print(file_data) print("类型:", type(file_data)) # 将字符串转化为字典或列表 print("***转化yaml数据为字典或列表***") data = yaml.load(file_data) print(data) print("类型:", type(data)) return data current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "config.yaml") get_yaml_data(yaml_path) """ ***获取yaml文件数据*** # yaml键值对:即python中字典 usr: my psw: 123455 类型:<class 'str'> ***转化yaml数据为字典或列表*** {'usr': 'my', 'psw': 123455} 类型:<class 'dict'> """

3. yaml文件数据为键值对

(1)yaml文件中内容为键值对:

# yaml键值对:即python中字典 usr: my psw: 123455 s: " abc\n"

python解析yaml文件后获取的数据:

{'usr': 'my', 'psw': 123455, 's': ' abc\n'}

(2)yaml文件中内容为“键值对'嵌套"键值对"

# yaml键值对嵌套:即python中字典嵌套字典 usr1: name: a psw: 123 usr2: name: b psw: 456

python解析yaml文件后获取的数据:

{'usr1': {'name': 'a', 'psw': 123}, 'usr2': {'name': 'b', 'psw': 456}}

(3)yaml文件中“键值对”中嵌套“数组”

python解析yaml文件后获取的数据:

# yaml键值对中嵌套数组 usr3: - a - b - c usr4: - b

python解析yaml文件后获取的数据:

{'usr3': ['a', 'b', 'c'], 'usr4': ['b']}

4. yaml文件数据为数组

(1)yaml文件中内容为数组

# yaml数组 - a - b - 5

python解析yaml文件后获取的数据:

['a', 'b', 5]

(2)yaml文件“数组”中嵌套“键值对”

# yaml"数组"中嵌套"键值对" - usr1: aaa - psw1: 111 usr2: bbb psw2: 222

python解析yaml文件后获取的数据:

[{'usr1': 'aaa'}, {'psw1': 111, 'usr2': 'bbb', 'psw2': 222}]

5. yaml文件中基本数据类型:

# 纯量 s_val: name # 字符串:{'s_val': 'name'} spec_s_val: "name\n" # 特殊字符串:{'spec_s_val': 'name\n' num_val: 31.14 # 数字:{'num_val': 31.14} bol_val: true # 布尔值:{'bol_val': True} nul_val: null # null值:{'nul_val': None} nul_val1: ~ # null值:{'nul_val1': None} time_val: 2018-03-01t11:33:22.55-06:00 # 时间值:{'time_val': datetime.datetime(2018, 3, 1, 17, 33, 22, 550000)} date_val: 2019-01-10 # 日期值:{'date_val': datetime.date(2019, 1, 10)}

6. yaml文件中引用

yaml文件中内容

animal3: &animal3 fish test: *animal3

python读取的数据

{'animal3': 'fish', 'test': 'fish'}

三、python中读取多个yaml文档

1. 多个文档在一个yaml文件,使用 --- 分隔方式来分段

如:yaml文件中数据

# 分段yaml文件中多个文档 --- animal1: dog age: 2 --- animal2: cat age: 3

2. python脚本读取一个yaml文件中多个文档方法

python获取yaml数据时需使用load_all函数来解析全部的文档,再从中读取对象中的数据

# yaml文件中含有多个文档时,分别获取文档中数据 def get_yaml_load_all(yaml_file): # 打开yaml文件 file = open(yaml_file, 'r', encoding="utf-8") file_data = file.read() file.close() all_data = yaml.load_all(file_data) for data in all_data: print(data) current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "config.yaml") get_yaml_load_all(yaml_path) """结果 {'animal1': 'dog', 'age': 2} {'animal2': 'cat', 'age': 3} """

四、python对象生成yaml文档

1. 直接导入yaml(即import yaml)生成的yaml文档

通过yaml.dump()方法不会将列表或字典数据进行转化yaml标准模式,只会将数据生成到yaml文档中

# 将python对象生成yaml文档 import yaml def generate_yaml_doc(yaml_file): py_object = {'school': 'zhang', 'students': ['a', 'b']} file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(py_object, file) file.close() current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "generate.yaml") generate_yaml_doc(yaml_path) """结果 school: zhang students: [a, b] """

2. 使用ruamel模块中的yaml方法生成标准的yaml文档

(1)使用ruamel模块中yaml前提条件

使用yaml需要安装的模块:ruamel.yaml(pip3 install ruamel.yaml); 导入的模块:from ruamel import yaml

(2)ruamel模块生成yaml文档

def generate_yaml_doc_ruamel(yaml_file): from ruamel import yaml py_object = {'school': 'zhang', 'students': ['a', 'b']} file = open(yaml_file, 'w', encoding='utf-8') yaml.dump(py_object, file, Dumper=yaml.RoundTripDumper) file.close() current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "generate.yaml") generate_yaml_doc_ruamel(yaml_path) """结果 school: zhang students: - a - b """

(3)ruamel模块读取yaml文档

# 通过from ruamel import yaml读取yaml文件 def get_yaml_data_ruamel(yaml_file): from ruamel import yaml file = open(yaml_file, 'r', encoding='utf-8') data = yaml.load(file.read(), Loader=yaml.Loader) file.close() print(data) current_path = os.path.abspath(".") yaml_path = os.path.join(current_path, "dict_config.yaml") get_yaml_data_ruamel(yaml_path)

以上就是详解Python yaml模块的详细内容,更多关于Python yaml模块的资料请关注软件开发网其它相关文章!

您可能感兴趣的文章:Python代码执行时间测量模块timeit用法解析Python timeit模块的使用实践python中的计时器timeit的使用方法使用php-timeit估计php函数的执行时间详解Python中Pyyaml模块的使用Python threading模块condition原理及运行流程详解Python xmltodict模块安装及代码实例Python timeit模块原理及使用方法



yaml Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号