其中x1,y1;x2,y2分别表示两个矩形框的中心点
def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2):
if((abs(x1 - x2) < ((w1 + w2)/ 2.0)) and (abs(y1-y2) < ((h1 + h2)/2.0))):
left = max((x1 - (w1 / 2.0)), (x2 - (w2 / 2.0)))
upper = max((y1 - (h1 / 2.0)), (y2 - (h2 / 2.0)))
right = min((x1 + (w1 / 2.0)), (x2 + (w2 / 2.0)))
bottom = min((y1 + (h1 / 2.0)), (y2 + (h2 / 2.0)))
inter_w = abs(left - right)
inter_h = abs(upper - bottom)
inter_square = inter_w * inter_h
union_square = (w1 * h1)+(w2 * h2)-inter_square
calcIOU = inter_square/union_square * 1.0
print("calcIOU:", calcIOU)
else:
print("No intersection!")
return calcIOU
def main():
calcIOU(1, 2, 2, 2, 2, 1, 2, 2)
if __name__ == '__main__':
main()
以上这篇Python计算机视觉里的IOU计算实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。
您可能感兴趣的文章:python实现BP神经网络回归预测模型python实现的Iou与Giou代码python:目标检测模型预测准确度计算方式(基于IoU)