基于Python中的yield表达式介绍

Ianthe ·
更新时间:2024-11-14
· 989 次阅读

python生成器

python中生成器是迭代器的一种,使用yield返回函数值。每次调用yield会暂停,而可以使用next()函数和send()函数可以恢复生成器。

这里可以参考Python函数式编程指南:对生成器全面讲解

注意到yield是个表达式而不仅仅是个语句,所以可以使用x = yield r 这样的语法。

这个知识点在协程中需要使用。协程的概念指的是在一个线程内,一个程序中断去执行另一个程序,有点类似于CPU中断。这样减少了切换线程带来的负担,同时不需要多线程中的锁机制,因为不存在同时写的问题。

python使用生成器来实现协程,下面看一个python协程应用于生产者消费者问题的例子

def consumer(): r = 'yield' while True: #当下边语句执行时,先执行yield r,然后consumer暂停,此时赋值运算还未进行 #等到producer调用send()时,send()的参数作为yield r表达式的值赋给等号左边 n = yield r #yield表达式可以接收send()发出的参数 if not n: return print('[CONSUMER] Consuming %s...' % n) r = '200 OK' def produce(c): c.send(None) n = 0 while n < 5: n = n + 1 print('[PRODUCER] Producing %s...' % n) r = c.send(n) #调用consumer生成器 print('[PRODUCER] Consumer return: %s' % r) c.close() c = consumer() produce(c)

注意到send需要先调用send(None),因为只有生成器是暂停状态才可以接收send的参数。

为了理解send()恢复生成器的过程,我们可以再看一个例子:

def gen(): a = yield 1 print('yield a % s' % a) b = yield 2 print('yield b % s' % b) c = yield 3 print('yield c % s' % c) r = gen() x = next(r) print('next x %s' % x) y = r.send(10) print('next y %s' %y) z = next(r) print('next z %s' % z)

可以看到实际上y=r.send(10) 的参数10是赋给了a。整个运行过程即执行x=next(r) 之后,gen()执行了yield 1 然后暂停,没有进行对a的赋值。但再调用y=r.send(10) 时赋值过程继续,并把10赋给了a.

以上这篇基于Python中的yield表达式介绍就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

您可能感兴趣的文章:Python generator生成器和yield表达式详解python函数式编程学习之yield表达式形式详解python之yield表达式学习



yield Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号