对python中的乘法dot和对应分量相乘multiply详解

Adelaide ·
更新时间:2024-11-14
· 557 次阅读

向量点乘 (dot) 和对应分量相乘 (multiply) :

>>> a array([1, 2, 3]) >>> b array([ 1., 1., 1.]) >>> np.multiply(a,b) array([ 1., 2., 3.]) >>> np.dot(a,b) 6.0

矩阵乘法 (dot) 和对应分量相乘 (multiply) :

>>> c matrix([[1, 2, 3]]) >>> d matrix([[ 1., 1., 1.]]) >>> np.multiply(c,d) matrix([[ 1., 2., 3.]]) >>> np.dot(c,d) Traceback (most recent call last): File "<stdin>", line 1, in <module> ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

写代码过程中,*表示对应分量相乘 (multiply) :

>>> a*b array([ 1., 2., 3.]) >>> c*d Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\matrixlib\defmatrix.py", line 343, in __mul__ return N.dot(self, asmatrix(other)) ValueError: shapes (1,3) and (1,3) not aligned: 3 (dim 1) != 1 (dim 0)

以上这篇对python中的乘法dot和对应分量相乘multiply详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持软件开发网。

您可能感兴趣的文章:PyTorch 对应点相乘、矩阵相乘实例python中数组和矩阵乘法及使用总结(推荐)Python中的几种矩阵乘法(小结)基于python及pytorch中乘法的使用详解



dot Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号