postgresql 中的 like 查询优化方案

Butterfly ·
更新时间:2024-11-10
· 539 次阅读

当时数量量比较庞大的时候,做模糊查询效率很慢,为了优化查询效率,尝试如下方法做效率对比

一、对比情况说明:

1、数据量100w条数据

2、执行sql

二、对比结果 explain analyze SELECT c_patent, c_applyissno, d_applyissdate, d_applydate, c_patenttype_dimn, c_newlawstatus, c_abstract FROM public.t_knowl_patent_zlxx_temp WHERE c_applicant LIKE '%本溪满族自治县连山关镇安平安养殖场%'; 1、未建索时执行计划: "Gather (cost=1000.00..83803.53 rows=92 width=1278) (actual time=217.264..217.264 rows=0 loops=1) Workers Planned: 2 Workers Launched: 2 -> Parallel Seq Scan on t_knowl_patent_zlxx (cost=0.00..82794.33 rows=38 width=1278) (actual time=212.355..212.355 rows=0 loops=3) Filter: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text) Rows Removed by Filter: 333333 Planning time: 0.272 ms Execution time: 228.116 ms" 2、btree索引

建索引语句

CREATE INDEX idx_public_t_knowl_patent_zlxx_applicant ON public.t_knowl_patent_zlxx(c_applicant varchar_pattern_ops);

执行计划

"Gather (cost=1000.00..83803.53 rows=92 width=1278) (actual time=208.253..208.253 rows=0 loops=1) Workers Planned: 2 Workers Launched: 2 -> Parallel Seq Scan on t_knowl_patent_zlxx (cost=0.00..82794.33 rows=38 width=1278) (actual time=203.573..203.573 rows=0 loops=3) Filter: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text) Rows Removed by Filter: 333333 Planning time: 0.116 ms Execution time: 218.189 ms"

但是如果将查询sql稍微改动一下,把like查询中的前置%去掉是这样的

Index Scan using idx_public_t_knowl_patent_zlxx_applicant on t_knowl_patent_zlxx_temp (cost=0.55..8.57 rows=92 width=1278) (actual time=0.292..0.292 rows=0 loops=1) Index Cond: (((c_applicant)::text ~>=~ '本溪满族自治县连山关镇安平安养殖场'::text) AND ((c_applicant)::text ~<~ '本溪满族自治县连山关镇安平安养殖圻'::text)) Filter: ((c_applicant)::text ~~ '本溪满族自治县连山关镇安平安养殖场%'::text) Planning time: 0.710 ms Execution time: 0.378 ms 3、gin索引

创建索引语句(postgresql要求在9.6版本及以上)

create extension pg_trgm; CREATE INDEX idx_public_t_knowl_patent_zlxx_applicant ON public.t_knowl_patent_zlxx USING gin (c_applicant gin_trgm_ops);

执行计划

Bitmap Heap Scan on t_knowl_patent_zlxx (cost=244.71..600.42 rows=91 width=1268) (actual time=0.649..0.649 rows=0 loops=1) Recheck Cond: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text) -> Bitmap Index Scan on idx_public_t_knowl_patent_zlxx_applicant (cost=0.00..244.69 rows=91 width=0) (actual time=0.647..0.647 rows=0 loops=1) Index Cond: ((c_applicant)::text ~~ '%本溪满族自治县连山关镇安平安养殖场%'::text) Planning time: 0.673 ms Execution time: 0.740 ms 三、结论

btree索引可以让后置% "abc%"的模糊匹配走索引,gin + gp_trgm可以让前后置% "%abc%" 走索引。但是gin 索引也有弊端,以下情况可能导致无法命中:

搜索字段少于3个字符时,不会命中索引,这是gin自身机制导致。

当搜索字段过长时,比如email检索,可能也不会命中索引,造成原因暂时未知。

补充:PostgreSQL LIKE 查询效率提升实验

一、未做索引的查询效率

作为对比,先对未索引的查询做测试

EXPLAIN ANALYZE select * from gallery_map where author = '曹志耘'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=1025 width=621) (actual time=0.011..39.753 rows=1031 loops=1) Filter: ((author)::text = '曹志耘'::text) Rows Removed by Filter: 71315 Planning time: 0.194 ms Execution time: 39.879 ms (5 rows) Time: 40.599 ms EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=1025 width=621) (actual time=0.017..41.513 rows=1031 loops=1) Filter: ((author)::text ~~ '曹志耘'::text) Rows Removed by Filter: 71315 Planning time: 0.188 ms Execution time: 41.669 ms (5 rows) Time: 42.457 ms EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘%'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.017..41.492 rows=1031 loops=1) Filter: ((author)::text ~~ '曹志耘%'::text) Rows Removed by Filter: 71315 Planning time: 0.307 ms Execution time: 41.633 ms (5 rows) Time: 42.676 ms

很显然都会做全表扫描

二、创建btree索引

PostgreSQL默认索引是btree

CREATE INDEX ix_gallery_map_author ON gallery_map (author); EXPLAIN ANALYZE select * from gallery_map where author = '曹志耘'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on gallery_map (cost=36.36..2715.37 rows=1025 width=621) (actual time=0.457..1.312 rows=1031 loops=1) Recheck Cond: ((author)::text = '曹志耘'::text) Heap Blocks: exact=438 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..36.10 rows=1025 width=0) (actual time=0.358..0.358 rows=1031 loops=1) Index Cond: ((author)::text = '曹志耘'::text) Planning time: 0.416 ms Execution time: 1.422 ms (7 rows) Time: 2.462 ms EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on gallery_map (cost=36.36..2715.37 rows=1025 width=621) (actual time=0.752..2.119 rows=1031 loops=1) Filter: ((author)::text ~~ '曹志耘'::text) Heap Blocks: exact=438 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..36.10 rows=1025 width=0) (actual time=0.560..0.560 rows=1031 loops=1) Index Cond: ((author)::text = '曹志耘'::text) Planning time: 0.270 ms Execution time: 2.295 ms (7 rows) Time: 3.444 ms EXPLAIN ANALYZE select * from gallery_map where author like '曹志耘%'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.015..41.389 rows=1031 loops=1) Filter: ((author)::text ~~ '曹志耘%'::text) Rows Removed by Filter: 71315 Planning time: 0.260 ms Execution time: 41.518 ms (5 rows) Time: 42.430 ms EXPLAIN ANALYZE select * from gallery_map where author like '%研究室'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=2282 width=621) (actual time=0.064..52.824 rows=2152 loops=1) Filter: ((author)::text ~~ '%研究室'::text) Rows Removed by Filter: 70194 Planning time: 0.254 ms Execution time: 53.064 ms (5 rows) Time: 53.954 ms

可以看到,等于、like的全匹配是用到索引的,like的模糊查询还是全表扫描

三、创建gin索引 CREATE EXTENSION pg_trgm; CREATE INDEX ix_gallery_map_author ON gallery_map USING gin (author gin_trgm_ops); EXPLAIN ANALYZE select * from gallery_map where author like '曹%'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on gallery_map (cost=19.96..2705.69 rows=1028 width=621) (actual time=0.419..1.771 rows=1031 loops=1) Recheck Cond: ((author)::text ~~ '曹%'::text) Heap Blocks: exact=438 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..19.71 rows=1028 width=0) (actual time=0.312..0.312 rows=1031 loops=1) Index Cond: ((author)::text ~~ '曹%'::text) Planning time: 0.358 ms Execution time: 1.916 ms (7 rows) Time: 2.843 ms EXPLAIN ANALYZE select * from gallery_map where author like '%耘%'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------- Seq Scan on gallery_map (cost=0.00..7002.32 rows=1028 width=621) (actual time=0.015..51.641 rows=1031 loops=1) Filter: ((author)::text ~~ '%耘%'::text) Rows Removed by Filter: 71315 Planning time: 0.268 ms Execution time: 51.957 ms (5 rows) Time: 52.899 ms EXPLAIN ANALYZE select * from gallery_map where author like '%研究室%'; QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------- Bitmap Heap Scan on gallery_map (cost=31.83..4788.42 rows=2559 width=621) (actual time=0.914..4.195 rows=2402 loops=1) Recheck Cond: ((author)::text ~~ '%研究室%'::text) Heap Blocks: exact=868 -> Bitmap Index Scan on ix_gallery_map_author (cost=0.00..31.19 rows=2559 width=0) (actual time=0.694..0.694 rows=2402 loops=1) Index Cond: ((author)::text ~~ '%研究室%'::text) Planning time: 0.306 ms Execution time: 4.403 ms (7 rows) Time: 5.227 ms

gin_trgm索引的效果好多了

由于pg_trgm的索引是把字符串切成多个3元组,然后使用这些3元组做匹配,所以gin_trgm索引对于少于3个字符(包括汉字)的查询,只有前缀匹配会走索引

另外,还测试了btree_gin,效果和btree一样

注意:

gin_trgm要求数据库必须使用UTF-8编码

demo_v1 # \l demo_v1 List of databases Name | Owner | Encoding | Collate | Ctype | Access privileges ---------+-----------+----------+-------------+-------------+------------------- demo_v1 | wmpp_user | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

以上为个人经验,希望能给大家一个参考,也希望大家多多支持软件开发网。如有错误或未考虑完全的地方,望不吝赐教。

您可能感兴趣的文章:postgresql coalesce函数数据转换方式postgresql 中的COALESCE()函数使用小技巧postgresql 实现修改jsonb字段中的某一个值postgresql 实现将字段为空的值替换为指定值PostgreSQL 禁用全表扫描的实现解决PostgreSQL Array使用中的一些小问题sql 实现将空白值替换为其他值



LIKE 优化 PostgreSQL

需要 登录 后方可回复, 如果你还没有账号请 注册新账号