一、简单字段定义
1、定义 Schema 并生成 Parquet 文件
2、验证 Parquet 数据文件
二、含嵌套字段定义
1、验证 Parquet 数据文件
一、简单字段定义
Java
和Python
实现 Avro 转换成Parquet
格式,chema
都是在 Avro 中定义的。这里要尝试的是如何定义Parquet
的Schema
, 然后据此填充数据并生成Parquet
文件。
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
# 定义 Schema
schema = pa.schema([
('id', pa.int32()),
('email', pa.string())
])
# 准备数据
ids = pa.array([1, 2], type = pa.int32())
emails = pa.array(['first@example.com', 'second@example.com'], pa.string())
# 生成 Parquet 数据
batch = pa.RecordBatch.from_arrays(
[ids, emails],
schema = schema
)
table = pa.Table.from_batches([batch])
# 写 Parquet 文件 plain.parquet
pq.write_table(table, 'plain.parquet')
import pandas as pd
import pyarrow as pa
import pyarrow . parquet as pq
# 定义 Schema
schema = pa . schema ( [
( 'id' , pa . int32 ( ) ) ,
( 'email' , pa . string ( ) )
] )
# 准备数据
ids = pa . array ( [ 1 , 2 ] , type = pa . int32 ( ) )
emails = pa . array ( [ 'first@example.com' , 'second@example.com' ] , pa . string ( ) )
# 生成 Parquet 数据
batch = pa . RecordBatch . from_arrays (
[ ids , emails ] ,
schema = schema
)
table = pa . Table . from_batches ( [ batch ] )
# 写 Parquet 文件 plain.parquet
pq . write_table ( table , 'plain.parquet' )
2、验证 Parquet 数据文件
我们可以用工具 parquet-tools
来查看 plain.parquet
文件的数据和 Schema
$ parquet-tools schema plain.parquet message schema { optional int32 id; optional binary email (STRING); } $ parquet-tools cat --json plain.parquet {"id":1,"email":"first@example.com"} {"id":2,"email":"second@example.com"}
没问题,与我们期望的一致。也可以用 pyarrow
代码来获取其中的 Schema
和数据
schema = pq.read_schema('plain.parquet')
print(schema)
df = pd.read_parquet('plain.parquet')
print(df.to_json())
schema = pq . read_schema ( 'plain.parquet' )
print ( schema )
df = pd . read_parquet ( 'plain.parquet' )
print ( df . to_json ( ) )
输出为:
schema = pq.read_schema('plain.parquet')
print(schema)
df = pd.read_parquet('plain.parquet')
print(df.to_json())
schema = pq . read_schema ( 'plain.parquet' )
print ( schema )
df = pd . read_parquet ( 'plain.parquet' )
print ( df . to_json ( ) )
二、含嵌套字段定义
下面的 Schema
定义加入一个嵌套对象,在 address
下分 email_address
和 post_address
,Schema
定义及生成 Parquet
文件的代码如下
import pandas as pd
import pyarrow as pa
import pyarrow.parquet as pq
# 内部字段
address_fields = [
('email_address', pa.string()),
('post_address', pa.string()),
]
# 定义 Parquet Schema,address 嵌套了 address_fields
schema = pa.schema(j)
# 准备数据
ids = pa.array([1, 2], type = pa.int32())
addresses = pa.array(
[('first@example.com', 'city1'), ('second@example.com', 'city2')],
pa.struct(address_fields)
)
# 生成 Parquet 数据
batch = pa.RecordBatch.from_arrays(
[ids, addresses],
schema = schema
)
table = pa.Table.from_batches([batch])
# 写 Parquet 数据到文件
pq.write_table(table, 'nested.parquet')
import pandas as pd
import pyarrow as pa
import pyarrow . parquet as pq
# 内部字段
address_fields = [
( 'email_address' , pa . string ( ) ) ,
( 'post_address' , pa . string ( ) ) ,
]
# 定义 Parquet Schema,address 嵌套了 address_fields
schema = pa . schema ( j )
# 准备数据
ids = pa . array ( [ 1 , 2 ] , type = pa . int32 ( ) )
addresses = pa . array (
[ ( 'first@example.com' , 'city1' ) , ( 'second@example.com' , 'city2' ) ] ,
pa . struct ( address_fields )
)
# 生成 Parquet 数据
batch = pa . RecordBatch . from_arrays (
[ ids , addresses ] ,
schema = schema
)
table = pa . Table . from_batches ( [ batch ] )
# 写 Parquet 数据到文件
pq . write_table ( table , 'nested.parquet' )
1、验证 Parquet 数据文件
同样用 parquet-tools
来查看下 nested.parquet
文件
$ parquet-tools schema nested.parquet message schema { optional int32 id; optional group address { optional binary email_address (STRING); optional binary post_address (STRING); } } $ parquet-tools cat --json nested.parquet {"id":1,"address":{"email_address":"first@example.com","post_address":"city1"}} {"id":2,"address":{"email_address":"second@example.com","post_address":"city2"}}
用 parquet-tools
看到的 Schama
并没有 struct
的字样,但体现了它 address
与下级属性的嵌套关系。
用 pyarrow
代码来读取 nested.parquet
文件的 Schema
和数据是什么样子
schema = pq.read_schema("nested.parquet")
print(schema)
df = pd.read_parquet('nested.parquet')
print(df.to_json())
schema = pq . read_schema ( "nested.parquet" )
print ( schema )
df = pd . read_parquet ( 'nested.parquet' )
print ( df . to_json ( ) )
输出:
id: int32
-- field metadata --
PARQUET:field_id: '1'
address: struct<email_address: string, post_address: string>
child 0, email_address: string
-- field metadata --
PARQUET:field_id: '3'
child 1, post_address: string
-- field metadata --
PARQUET:field_id: '4'
-- field metadata --
PARQUET:field_id: '2'
{"id":{"0":1,"1":2},"address":{"0":{"email_address":"first@example.com","post_address":"city1"},"1":{"email_address":"second@example.com","post_address":"city2"}}}
id : int32
-- field metadata --
PARQUET : field_id : '1'
address : struct & lt ; email_address : string , post_address : string & gt ;
child 0 , email_address : string
-- field metadata --
PARQUET : field_id : '3'
child 1 , post_address : string
-- field metadata --
PARQUET : field_id : '4'
-- field metadata --
PARQUET : field_id : '2'
{ "id" : { "0" : 1 , "1" : 2 } , "address" : { "0" : { "email_address" : "first@example.com" , "post_address" : "city1" } , "1" : { "email_address" : "second@example.com" , "post_address" : "city2" } } }
数据当然是一样的,有略微不同的是显示的 Schema
中, address
标识为 struct<email_address: string, post_address: string>
, 明确的表明它是一个 struct
类型,而不是只展示嵌套层次。
到此这篇关于用 Python
定义 Schema
并生成 Parquet
文件详情的文章就介绍到这了,更多相关用 Python
定义 Schema
并生成 Parquet
文件内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!