numpy数组中元素单个选取或部分选取
numpy数组操作
引言
ndarray
ndarray之创建数组
创建随机数组
ndarray的数组属性
数组和标量之间的运算
基本的索引和切片
数学和统计方法
总结
numpy数组中元素单个选取或部分选取一维数组中选择部分元素输出,即数组名【【下标】】,是两个中括号!
二维数组选取一个元素,即数组名【行,列】,行列是从0开始的。
行列可以省略,行和列全部省略时,输出整个数组。
行省略,代表输出所有行;列省略,代表输出所有列。
可以指定输出某几行、某几列,即数组名【1:3,1:4】,输出1到2行且1到3列的所有元素,即输出二维数组。
import numpy as np
ans = np.array([1,2,3,4,5,6,7,8,9]) #一维数组
a = np.array([1,2,3,4,5,6,7]) #一维数组
b = np.array([[1,2,3],[4,5,6],[7,8,9]]) #二维数组
#获取指定位置的元素
print(ans[[2,3,5]]) #即为输出ans数组中下标为2,3,5的元素
print(b[1,2]) #输出1行2列的元素,这里的行和列是从0开始的
print(b[1,:]) #输出1行的所有元素,“:”就代表着输出所有元素
print(b[:,2]) #输出2列的所有元素
print(b[1:3,0:3]) #1到2行,0到2列的元素,“端点左闭右开”
numpy数组操作
引言
python中用list保存一组值,可以用来作为数组使用,由于列表的元素可以是任何对象,英雌列表中所保存的是对象的指针,为了保存一个简单的[1,2,3],需要三个指正和三个整数对象,对于数值运算来说这种结果显然比较浪费你内存和CPU计算时间
此外python还提供了一个array模块,array对象和列表不同,他直接保存数值,呵呵C语言的一位数据比较类似,但是由于它不支持多维,也没有各种运算函数,因此也不适合做数值运算
numpy的诞生弥补了这些不足,numpy提供了ndarray对象:是存储单一数据类型的多维数组
numpy是高性能科学计算和数据分析的基础包,支持为读书族与矩阵运算包括:
一个强大的n为数组对象ndarray,具有适量算数运算和复杂广播能力的快速且节省时间的多维数组。
用于对整组数据进行快速运算的标准数学函数
对于读写磁盘数据的工具以及用于操作内存映射文件的工具
线性代数,随机数生成以及傅里叶变换等功能
ndarrayN维数组对象ndarray是用于存放同类型元素的多维数组
ndarray中的每个元素在内存中都有相容存储大小的区域
ndarray中的每个元素是数据类型对象的对象简称dtype
可以对数组进行索引和切片
可以通过ndarray的方法和属性来访问和修改ndarray的内容
创建nadrray:创建数组最简单的办法就是使用array函数,它接受一切序列型的对象,然后产生一个含有传入数据的numpy数组,其中嵌套序列(等长列表组成的列表)将会被转化为一个多维数组
numpy.array(obkject, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
object 数组或嵌套的数列
dtype 数组元素的数据类型 可选
copy 对象是否需要复制
order 创建数组的样式,c为行方向,F为列方向,A为任意方向
subok 默认返回一个与基类类型一致的数组
ndmin 指定生成数组的最小维度
import numpy as np
a = [1,2,3,4]
b = np.array(a)
print(b)
>>> array([1,2,3,4])
c = np.array([[1,2],[3,4]])
print(c)
>>>>[[1,2]
[3,4]]
除了np.array之外,还有一些函数也可以新建数组:
zrrors和ones分别可以创建指定长度或者形状的全0或1数组
empty可以创建一个没有任何具体值的数组
np.zeros(3) # 全0数组
np.ones(3) # 全1数组
np.zeros((3,3)) #全0二维数组 三行三列
np.zeros((3,1)) # 0二维数组 三行一列
np.zeros((1,3))
np.ones((3,3))
np.identity(3) #单位矩阵,三行三列
ndarray之创建数组
创建随机数
均匀分布
np.random.rand(10,10) 创建指定形状(示例为10行10列)的数组(范围在0-1之间)
np.random.uniform(0,100) 创建指定范围内的一个数
np.random.randint(0,100) 创建指定范围内的整数
正态分布
np.random.normal(1.75,0.1,(2,3)) 给定均值/标准差/维度的正态分布
创建随机数组np.random.randint(0,50,5) # 随机数组,5个0-50之间的数字
np.random.randint(0,50,(3,5)) #3行5列 供15个随机数,都在0-50之间
np.random.rand(10) #10个结余[0,1)之间的随机数
np.random.standard_noraml(5) #从标准正太分部中随机采样5个数字
ndarray的数组属性
b.size | 数组元素个数 |
b.shape | 数组形状 |
b.ndim | 数组维度 |
b.dtype | 数组元素类型 |
b.ltemsize | 数组元素字节大小 |
b.reshape()可以更改形状(3,2)变(2,3)或者其他
数组和标量之间的运算数组很重要,因为它可以是我们不用编写循环即可对数据执行批量运算,这通常叫做矢量化,大小相同的数组之间的任何算数运算都会将运算应用到元素级,同样,数组与标量的算数运算也会将那个表两只传播到各个元素
arr = np.array([[1.,2.,3.],[4.,5.,6.]])
print(arr)
>>>array([[1., 2., 3.],
[4., 5., 6.]])
print(1/array)
>>>array([[1. , 0.5 , 0.33333333],
[0.25 , 0.2 , 0.16666667]])
print(arr-arr)
>>>array([[0., 0., 0.],
[0., 0., 0.]])
print(arr*arr)
>>>array([[ 1., 4., 9.],
[16., 25., 36.]])
print(arr*0.5)
>>>array([[0.5, 1. , 1.5],
[2. , 2.5, 3. ]])
基本的索引和切片
选取数据子集或单个元素的方式很多
以为数组很简单,从表面上看,他们跟python列表差不多
一位数组跟列表最重要的区别在于,数组切片是原始数据的视图,这意味着数据不会被复制,数组视图上任何修改都会直接反应到原始数组上
将一个表两只赋值给一个切片是,该值会自动传播到整个选取
arr = np.arange(10)
print(arr[5])
>>>5
print(arr[5:8])
>>>array([5,6,7])
print(arr[5:8]=12)
>>>array([0,1,2,3,4,12,12,12,8,9])
arr_slice = arr[5:8]
arr_slice[1] = 12345
print(arr)
>>>array([0,1,2,3,4,12,12345,12,8,9])
arr_slice[:] = 64
print(arr)
>>>array([0,1,2,3,4,64,64,64,8,9])
在二维数组中,个所有位置上的元素不再是标量,而是一维数组
可以对个元素进行递归访问,但这样有点麻烦
传入一个以逗号隔开的所有列表来选取单个元素
在多维数组中,如果省略了后面的索引,则返回对象会使一个维度低一点的ndarray
arr3d = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
print(arr3d)
>>>array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
print(arr3d[0])
>>>array([[1, 2, 3],
[4, 5, 6]])
print(arr3d[0][1])
>>>array([4, 5, 6])
数学和统计方法
可以通过数组上的一组数学函数对整个 数组或者某个轴向的数据进行统计计算
sum | 对数组中全部或轴向元素求和。零长度的数组的sum为0 |
mean | 算数平均数,零长度的数组的mean为NAN |
std,var | 分别为标准差和方差,自由度可调(默认为n) |
min,max | 最小值和最大值 |
argmin,argmax | 分别为最小值和最大值的索引 |
cumsum | 所有元素的累加 |
cumprod | 所有元素的累积 |
arr = np.random.randn(5,4) #5行4列的正太分部的数据
print(arr.mean()) #这个值和下面方法的值相同
print(np.mean(arr))
print(arr.sum())
值得注意的是:
mean和sum这类的函数可以接受一个axis参数(用于计算该轴向上的统计值)
arr.mean(axis=1)
arr.sum(0)
cumsum:按照所给定的周参数返回元素的梯形累积和,axis=0,按照行累加。axis=1,按照列累加
cumprod:按照所给定的周参数返回元素的梯形累积乘积,axis=0,按照行累积,axis=1按照列累积
arr = np.array([[0,1,2],[3,4,5],[6,7,8]])
arr.cumsum(0)
>>>array([[ 0, 1, 2],
[ 3, 5, 7],
[ 9, 12, 15]], dtype=int32)
arr.cumprod(1)
>>>array([[ 0, 0, 0],
[ 3, 12, 60],
[ 6, 42, 336]], dtype=int32)
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持软件开发网。