C++ 用回溯法解决N皇后问题

Kita ·
更新时间:2024-11-13
· 674 次阅读

N皇后问题是计算机科学中最为经典的问题之一。1848年,国际西洋棋起手马克思·贝瑟尔提出了8皇后问题。
将N个皇后摆放在N*N的棋盘中,互相不可攻击,有多少种摆放方式,每种摆放方式具体是怎样的?

#include #include class Solution { public: Solution() {}; ~Solution() {}; std::vector<std::vector> solveNQueens(int n) { std::vector<std::vector> result; std::vector<std::vector> mark; std::vector location; for (int i = 0; i < n; i++) { mark.push_back((std::vector())); for (int j = 0; j < n; j++) { mark[i].push_back(0); } location.push_back(""); location[i].append(n,'.'); } generate(0,n,location,mark,result); return result; } private: void put_down_the_queen(int x, int y, std::vector<std::vector>& mark) { static const int dx[] = { -1,1,0,0,-1,-1,1,1 }; static const int dy[] = { 0,0,-1,1,-1,1,-1,1 }; mark[x][y] = 1; for (unsigned int i = 1; i < mark.size(); i++) { for (int j = 0; j = 0 && new_x = 0 && new_y < mark.size()) { mark[new_x][new_y] = 1; } } } } void generate(int k, int n, std::vector& location, std::vector<std::vector> &mark, std::vector<std::vector> &result) { if (k==n) { result.push_back(location); return; } for (int i = 0; i < n; i++) { if (mark[k][i]==0) { std::vector<std::vector> tmp_mark=mark; location[k][i] = 'Q'; put_down_the_queen(k, i, mark); generate(k + 1, n, location, mark, result); mark = tmp_mark; location[k][i] = '.'; } } } }; int main() { std::vector<std::vector> result; Solution solve; result = solve.solveNQueens(4); for (unsigned int i = 0; i < result.size(); i++) { printf("i=%d\n",i); for (int j = 0; j < result[i].size(); j++) { printf("%s\n",result[i][j].c_str()); } printf("\n"); } return 0; }

运行结果为:

i=0 .Q.. ...Q Q... ..Q. i=1 ..Q. Q... ...Q .Q..
作者:Gianna K



c+ 回溯法 C++ n皇后

需要 登录 后方可回复, 如果你还没有账号请 注册新账号