Python的MongoDB模块PyMongo操作方法集锦

Qoqa ·
更新时间:2024-11-15
· 570 次阅读

开始之前当然要导入模块啦:

>>> import pymongo

下一步,必须本地mongodb服务器的安装和启动已经完成,才能继续下去。

建立于MongoClient 的连接:

client = MongoClient('localhost', 27017) # 或者 client = MongoClient('mongodb://localhost:27017/')

得到数据库:

>>> db = client.test_database # 或者 >>> db = client['test-database']

得到一个数据集合:

collection = db.test_collection # 或者 collection = db['test-collection']

MongoDB中的数据使用的是类似Json风格的文档:

>>> import datetime >>> post = {"author": "Mike", ... "text": "My first blog post!", ... "tags": ["mongodb", "python", "pymongo"], ... "date": datetime.datetime.utcnow()}

插入一个文档:

>>> posts = db.posts >>> post_id = posts.insert_one(post).inserted_id >>> post_id ObjectId('...')

找一条数据:

>>> posts.find_one() {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} >>> posts.find_one({"author": "Mike"}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} >>> posts.find_one({"author": "Eliot"}) >>>

通过ObjectId来查找:

>>> post_id ObjectId(...) >>> posts.find_one({"_id": post_id}) {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']}

不要转化ObjectId的类型为String:

>>> post_id_as_str = str(post_id) >>> posts.find_one({"_id": post_id_as_str}) # No result >>>

如果你有一个post_id字符串,怎么办呢?

from bson.objectid import ObjectId # The web framework gets post_id from the URL and passes it as a string def get(post_id): # Convert from string to ObjectId: document = client.db.collection.find_one({'_id': ObjectId(post_id)})

多条插入:

>>> new_posts = [{"author": "Mike", ... "text": "Another post!", ... "tags": ["bulk", "insert"], ... "date": datetime.datetime(2009, 11, 12, 11, 14)}, ... {"author": "Eliot", ... "title": "MongoDB is fun", ... "text": "and pretty easy too!", ... "date": datetime.datetime(2009, 11, 10, 10, 45)}] >>> result = posts.insert_many(new_posts) >>> result.inserted_ids [ObjectId('...'), ObjectId('...')]

查找多条数据:

>>> for post in posts.find(): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']} {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'}

当然也可以约束查找条件:

>>> for post in posts.find({"author": "Mike"}): ... post ... {u'date': datetime.datetime(...), u'text': u'My first blog post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'mongodb', u'python', u'pymongo']} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

获取集合的数据条数:

>>> posts.count()

或者说满足某种查找条件的数据条数:

>>> posts.find({"author": "Mike"}).count()

范围查找,比如说时间范围:

>>> d = datetime.datetime(2009, 11, 12, 12) >>> for post in posts.find({"date": {"$lt": d}}).sort("author"): ... print post ... {u'date': datetime.datetime(2009, 11, 10, 10, 45), u'text': u'and pretty easy too!', u'_id': ObjectId('...'), u'author': u'Eliot', u'title': u'MongoDB is fun'} {u'date': datetime.datetime(2009, 11, 12, 11, 14), u'text': u'Another post!', u'_id': ObjectId('...'), u'author': u'Mike', u'tags': [u'bulk', u'insert']}

$lt是小于的意思。

如何建立索引呢?比如说下面这个查找:

>>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BasicCursor' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

建立索引:

>>> from pymongo import ASCENDING, DESCENDING >>> posts.create_index([("date", DESCENDING), ("author", ASCENDING)]) u'date_-1_author_1' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["cursor"] u'BtreeCursor date_-1_author_1' >>> posts.find({"date": {"$lt": d}}).sort("author").explain()["nscanned"]

连接聚集

>>> account = db.Account #或 >>> account = db["Account"]

查看全部聚集名称

>>> db.collection_names()

查看聚集的一条记录

>>> db.Account.find_one() >>> db.Account.find_one({"UserName":"keyword"})

查看聚集的字段

>>> db.Account.find_one({},{"UserName":1,"Email":1}) {u'UserName': u'libing', u'_id': ObjectId('4ded95c3b7780a774a099b7c'), u'Email': u'libing@35.cn'} >>> db.Account.find_one({},{"UserName":1,"Email":1,"_id":0}) {u'UserName': u'libing', u'Email': u'libing@35.cn'}

查看聚集的多条记录

>>> for item in db.Account.find(): item >>> for item in db.Account.find({"UserName":"libing"}): item["UserName"]

查看聚集的记录统计

>>> db.Account.find().count() >>> db.Account.find({"UserName":"keyword"}).count()

聚集查询结果排序

>>> db.Account.find().sort("UserName") #默认为升序 >>> db.Account.find().sort("UserName",pymongo.ASCENDING) #升序 >>> db.Account.find().sort("UserName",pymongo.DESCENDING) #降序

聚集查询结果多列排序

>>> db.Account.find().sort([("UserName",pymongo.ASCENDING),("Email",pymongo.DESCENDING)])

添加记录

>>> db.Account.insert({"AccountID":21,"UserName":"libing"})

修改记录

>>> db.Account.update({"UserName":"libing"},{"$set":{"Email":"libing@126.com","Password":"123"}})

删除记录

>>> db.Account.remove() -- 全部删除 >>> db.Test.remove({"UserName":"keyword"}) 您可能感兴趣的文章:Python操作Mongodb数据库的方法小结浅析Python与Mongodb数据库之间的操作方法Python使用pymongo库操作MongoDB数据库的方法实例python连接mongodb操作数据示例(mongodb数据库配置类)Python中的MongoDB基本操作:连接、查询实例Python操作MongoDB数据库PyMongo库使用方法使用Python脚本操作MongoDB的教程在Python中使用mongoengine操作MongoDB教程python操作MongoDB基础知识python连接MySQL、MongoDB、Redis、memcache等数据库的方法python连接、操作mongodb数据库的方法实例详解



方法 pymongo MongoDB Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号