先说一下消息队列的常见使用场景吧,其实场景有很多,但是比较核心的有3个:解耦、异步、削峰
1.1 解耦没有使用mq:
A系统发送个数据到BCD三个系统,接口调用发送,那如果E系统也要这个数据呢?那如果C系统现在不需要了呢?现在A系统又要发送第二种数据了呢?A系统负责人濒临崩溃中。。。再来点更加崩溃的事儿,A系统要时时刻刻考虑BCDE四个系统如果挂了咋办?我要不要重发?我要不要把消息存起来?头发都白了啊。。。
使用mq:
没有使用mq:
A系统接收一个请求,需要在自己本地写库,还需要在BCD三个系统写库,自己本地写库要3ms,BCD三个系统分别写库要300ms、450ms、200ms。最终请求总延时是3 + 300 + 450 + 200 = 953ms,接近1s,用户感觉搞个什么东西,慢死了慢死了。
使用mq :
没有使用mq:
每天0点到11点,A系统风平浪静,每秒并发请求数量就100个。结果每次一到11点~1点,每秒并发请求数量突然会暴增到1万条。但是系统最大的处理能力就只能是每秒钟处理1000个请求啊。。。尴尬了,系统会死。。。
使用mq :
优点上面已经说了,就是在特殊场景下有其对应的好处,解耦、异步、削峰
缺点呢?显而易见的
系统可用性降低:系统引入的外部依赖越多,越容易挂掉,本来你就是A系统调用BCD三个系统的接口就好了,人ABCD四个系统好好的,没啥问题,你偏加个MQ进来,万一MQ挂了咋整?MQ挂了,整套系统崩溃了,你不就完了么。
系统复杂性提高:硬生生加个MQ进来,你怎么保证消息没有重复消费?怎么处理消息丢失的情况?怎么保证消息传递的顺序性?头大头大,问题一大堆,痛苦不已
一致性问题:A系统处理完了直接返回成功了,人都以为你这个请求就成功了;但是问题是,要是BCD三个系统那里,BD两个系统写库成功了,结果C系统写库失败了,咋整?你这数据就不一致了。
所以消息队列实际是一种非常复杂的架构,你引入它有很多好处,但是也得针对它带来的坏处做各种额外的技术方案和架构来规避掉,最好之后,你会发现,妈呀,系统复杂度提升了一个数量级,也许是复杂了10倍。但是关键时刻,用,还是得用的。。。
所以中小型公司,技术实力较为一般,技术挑战不是特别高,用RabbitMQ是不错的选择;大型公司,基础架构研发实力较强,用RocketMQ是很好的选择
如果是大数据领域的实时计算、日志采集等场景,用Kafka是业内标准的,绝对没问题,社区活跃度很高,绝对不会黄,何况几乎是全世界这个领域的事实性规范
4 如何保证消息队列的高可用啊?没考虑MQ如何保证高可用,如果MQ挂了怎么办,导致几个小时系统不可用,
4.1rabbitmq有三种模式:单机模式,普通集群模式,镜像集群模式1)单机模式
就是demo级别的,一般就是你本地启动了玩玩儿的,没人生产用单机模式
2)普通集群模式
意思就是在多台机器上启动多个rabbitmq实例,每个机器启动一个。但是你创建的queue,只会放在一个rabbtimq实例上,但是每个实例都同步queue的元数据。完了你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从queue所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。因为这导致你要么消费者每次随机连接一个实例然后拉取数据,要么固定连接那个queue所在实例消费数据,前者有数据拉取的开销,后者导致单实例性能瓶颈。
而且如果那个放queue的实例宕机了,会导致接下来其他实例就无法从那个实例拉取,如果你开启了消息持久化,让rabbitmq落地存储消息的话,消息不一定会丢,得等这个实例恢复了,然后才可以继续从这个queue拉取数据。
所以这个事儿就比较尴尬了,这就没有什么所谓的高可用性可言了,这方案主要是提高吞吐量的,就是说让集群中多个节点来服务某个queue的读写操作。
3)镜像集群模式
这种模式,才是所谓的rabbitmq的高可用模式,跟普通集群模式不一样的是,你创建的queue,无论元数据还是queue里的消息都会存在于多个实例上,然后每次你写消息到queue的时候,都会自动把消息到多个实例的queue里进行消息同步。
这样的话,好处在于,你任何一个机器宕机了,没事儿,别的机器都可以用。坏处在于,第一,这个性能开销也太大了吧,消息同步所有机器,导致网络带宽压力和消耗很重!第二,这么玩儿,就没有扩展性可言了,如果某个queue负载很重,你加机器,新增的机器也包含了这个queue的所有数据,并没有办法线性扩展你的queue
那么怎么开启这个镜像集群模式呢?我这里简单说一下,其实很简单rabbitmq有很好的管理控制台,就是在后台新增一个策略,这个策略是镜像集群模式的策略,指定的时候可以要求数据同步到所有节点的,也可以要求就同步到指定数量的节点,然后你再次创建queue的时候,应用这个策略,就会自动将数据同步到其他的节点上去了。
4.2kafka的高可用性kafka一个最基本的架构认识:多个broker组成,每个broker是一个节点;你创建一个topic,这个topic可以划分为多个partition,每个partition可以存在于不同的broker上,每个partition就放一部分数据。
这就是天然的分布式消息队列,就是说一个topic的数据,是分散放在多个机器上的,每个机器就放一部分数据。
实际上rabbitmq之类的,并不是分布式消息队列,他就是传统的消息队列,只不过提供了一些集群、HA的机制而已,因为无论怎么玩儿,rabbitmq一个queue的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个queue的完整数据。
kafka 0.8以前,是没有HA机制的,就是任何一个broker宕机了,那个broker上的partition就废了,没法写也没法读,没有什么高可用性可言。
kafka 0.8以后,提供了HA机制,就是replica副本机制。每个partition的数据都会同步到吉他机器上,形成自己的多个replica副本。然后所有replica会选举一个leader出来,那么生产和消费都跟这个leader打交道,然后其他replica就是follower。写的时候,leader会负责把数据同步到所有follower上去,读的时候就直接读leader上数据即可。只能读写leader?很简单,要是你可以随意读写每个follower,那么就要care数据一致性的问题,系统复杂度太高,很容易出问题。kafka会均匀的将一个partition的所有replica分布在不同的机器上,这样才可以提高容错性。
这么搞,就有所谓的高可用性了,因为如果某个broker宕机了,没事儿,那个broker上面的partition在其他机器上都有副本的,如果这上面有某个partition的leader,那么此时会重新选举一个新的leader出来,大家继续读写那个新的leader即可。这就有所谓的高可用性了。
写数据的时候,生产者就写leader,然后leader将数据落地写本地磁盘,接着其他follower自己主动从leader来pull数据。一旦所有follower同步好数据了,就会发送ack给leader,leader收到所有follower的ack之后,就会返回写成功的消息给生产者。(当然,这只是其中一种模式,还可以适当调整这个行为)
消费的时候,只会从leader去读,但是只有一个消息已经被所有follower都同步成功返回ack的时候,这个消息才会被消费者读到。
回答这个问题,首先你别听到重复消息这个事儿,就一无所知吧,你先大概说一说可能会有哪些重复消费的问题。
首先就是比如rabbitmq、rocketmq、kafka,都有可能会出现消费重复消费的问题,正常。因为这问题通常不是mq自己保证的,是给你保证的。然后我们挑一个kafka来举个例子,说说怎么重复消费吧。
kafka实际上有个offset的概念,就是每个消息写进去,都有一个offset,代表他的序号,然后consumer消费了数据之后,每隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了,下次我要是重启啥的,你就让我继续从上次消费到的offset来继续消费吧。
但是凡事总有意外,比如我们之前生产经常遇到的,就是你有时候重启系统,看你怎么重启了,如果碰到点着急的,直接kill进程了,再重启。这会导致consumer有些消息处理了,但是没来得及提交offset,尴尬了。重启之后,少数消息会再次消费一次。
其实重复消费不可怕,可怕的是你没考虑到重复消费之后,怎么保证幂等性。
给你举个例子吧。假设你有个系统,消费一条往数据库里插入一条,要是你一个消息重复两次,你不就插入了两条,这数据不就错了?但是你要是消费到第二次的时候,自己判断一下已经消费过了,直接扔了,不就保留了一条数据?
一条数据重复出现两次,数据库里就只有一条数据,这就保证了系统的幂等性
幂等性,我通俗点说,就一个数据,或者一个请求,给你重复来多次,你得确保对应的数据是不会改变的,不能出错。
那所以第二个问题来了,怎么保证消息队列消费的幂等性?
其实还是得结合业务来思考,我这里给几个思路:
(1)比如你拿个数据要写库,你先根据主键查一下,如果这数据都有了,你就别插入了,update一下好吧
(2)比如你是写redis,那没问题了,反正每次都是set,天然幂等性
(3)比如你不是上面两个场景,那做的稍微复杂一点,你需要让生产者发送每条数据的时候,里面加一个全局唯一的id,类似订单id之类的东西,然后你这里消费到了之后,先根据这个id去比如redis里查一下,之前消费过吗?如果没有消费过,你就处理,然后这个id写redis。如果消费过了,那你就别处理了,保证别重复处理相同的消息即可。
还有比如基于数据库的唯一键来保证重复数据不会重复插入多条,我们之前线上系统就有这个问题,就是拿到数据的时候,每次重启可能会有重复,因为kafka消费者还没来得及提交offset,重复数据拿到了以后我们插入的时候,因为有唯一键约束了,所以重复数据只会插入报错,不会导致数据库中出现脏数据
如何保证MQ的消费是幂等性的,需要结合具体的业务来看