Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。
优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。好了,下面开始正文。
算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集。
虽然代码类似于梯度下降,但他是个分类算法
定义sigmoid函数
def sigmoid(x):
return 1/(1+np.exp(-x))
进行逻辑回归的参数设置以及迭代
def weights(x,y,alpha,thershold):
#初始化参数
m,n = x_train.shape
theta = np.random.rand(n) #参数
cnt = 0 # 迭代次数
max_iter = 50000
#开始迭代
while cnt < max_iter:
cnt += 1
diff = np.full(n,0)
for i in range(m):
diff = (y[i]-sigmoid(theta.T @ x[i]))*x[i]
theta = theta + alpha * diff
if(abs(diff)<thershold).all():
break
return theta
预测函数
def predict(x_test,theta):
if sigmoid(theta.T @ x_test)>0.5:
return 1
else:return 0
调用函数
x_train = np.array([[1,2.697,6.254],
[1,1.872,2.014],
[1,2.312,0.812],
[1,1.983,4.990],
[1,0.932,3.920],
[1,1.321,5.583],
[1,2.215,1.560],
[1,1.659,2.932],
[1,0.865,7.362],
[1,1.685,4.763],
[1,1.786,2.523]])
y_train = np.array([1,0,0,1,0,1,0,0,1,0,1])
alpha = 0.001 # 学习率
thershold = 0.01 # 指定一个阈值,用于检查两次误差
print(weights(x_train,y_train,alpha,thershold))
总结
以上所述是小编给大家介绍的Python利用逻辑回归分类实现模板,希望对大家有所帮助!
您可能感兴趣的文章:python使用梯度下降算法实现一个多线性回归python实现梯度下降法python梯度下降算法的实现python梯度下降法的简单示例基于随机梯度下降的矩阵分解推荐算法(python)python实现梯度下降算法python+numpy+matplotalib实现梯度下降法python代码实现逻辑回归logistic原理python编写Logistic逻辑回归python实现梯度下降和逻辑回归