【高通SDM660平台】Camera Kernel 驱动层代码逻辑分析

Pascall ·
更新时间:2024-11-14
· 980 次阅读

【高通SDM660平台】Camera Kernel 驱动1. Camera Kernel 驱动2. msm-cam 驱动2.1 struct v4l2_device 结构体描述2.2 struct msm_video_device 结构体描述2.3 struct media_device 结构体描述3. Sensor 驱动3.1 平台驱动probe函数 msm_sensor_driver_platform_probe()3.2 解析Camera DTS 节点 msm_sensor_driver_get_dt_data()3.2.1 msm_camera_sensor_board_info 结构体描述3.2.2 Camera 支持的外设类型 sensor_sub_module_t3.3 【重点】全局CameraSensorCtrol数组g_sctrl3.4 【重点】摄像头probe 函数 msm_sensor_driver_probe()3.4.1 hal层函数 module_sensor_init()3.4.2 hal层函数 sensor_init_probe()3.4.3 hal层函数 sensor_probe() 下发 CFG_SINIT_PROBE3.4.4 Kernel Ioctl 函数 msm_sensor_init_subdev_ioctl()3.4.5 probe函数 msm_sensor_driver_probe()3.4.6 创建 /dev/videoX节点 msm_sensor_driver_create_v4l_subdev()3.5 struct msm_sensor_ctrl_t 结构体描述4. Camera 驱动总结

在前面《【高通SDM660平台】Camera 驱动 Bringup Guide》中,我们学习了如何移植Camera 驱动,今天开始,我们要结合代码,学习下Kernel 中Camera 驱动具体的原理。

1. Camera Kernel 驱动

Kernel 驱动中 高通把Camera系统分为 Camera 和 Sensor 两部分:
Camera 部分是通用的代码逻辑,该部分由msm_cam 设备作为 video设备 与 userspace 进行交互,Qcom自已的MIPI,ISP,CPP 等硬件设备都属于Camera部分。
Sensor 可以理解为外部设备,是不同产商生产的Camera sensor模组。开发者分只需要配置不同的Sensor模组,将其注册到msm_cam设备上,创建好对应的video 设备,其他具体的接口逻辑均由Camera部分来实现。


在实际工作时,camera video设备主要是提供一个v4l2接口,Camera 驱动在接收到event消息后,会把该event消息及其参数以Post event形式发出到hal 层中,hal层接收到camera 驱动post 上来的event,来调用对应的逻辑,如果要操作sensor ,刚调用对应的 video设备就可以了。


接下来,我们依次来看看 msm_cam、sensor、v4l2 这几部分的代码逻辑:

2. msm-cam 驱动

msm-cam是在dts 中定义的,
\kernel\msm-4.4\arch\arm\boot\dts\qcom\sdm660-camera.dtsi中我们看到如下代码:

qcom,msm-cam@ca00000 { compatible = "qcom,msm-cam"; reg = ; reg-names = "msm-cam"; status = "ok"; bus-vectors = "suspend", "svs", "nominal", "turbo"; qcom,bus-votes = ; qcom,gpu-limit = ; };

查找代码,我们可以看到,其注册的地方在\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.c
可以看出,msm-cam 是以平台驱动的形式注册在kernel 中。

static const struct of_device_id msm_dt_match[] = { {.compatible = "qcom,msm-cam"}, {} }; MODULE_DEVICE_TABLE(of, msm_dt_match); static struct platform_driver msm_driver = { .probe = msm_probe, .driver = { .name = "msm", .owner = THIS_MODULE, .of_match_table = msm_dt_match, }, }; static int __init msm_init(void) { return platform_driver_register(&msm_driver); }

初始化注册成功后,会调用msm_probe函数,在该函数中,主要工作如下:

初始化 v4l2_device、video_device 、media_device 结构体并分配好KERNEL 内存。 注册 media_device 、v4l2_device、video_device 设备。 创建好 camera debug root fs @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.c static struct v4l2_device *msm_v4l2_dev; // 初始化一个 v4l2_device 类型的结构体 static int msm_probe(struct platform_device *pdev) { struct msm_video_device *pvdev = NULL; static struct dentry *cam_debugfs_root; // 1. 初始化一个 v4l2_device 类型的结构体,并分配好结构体内存 msm_v4l2_dev = kzalloc(sizeof(*msm_v4l2_dev), GFP_KERNEL); pvdev = kzalloc(sizeof(struct msm_video_device), GFP_KERNEL); // 2. 分配 video_device 结构体内存 pvdev->vdev = video_device_alloc(); // ---> kzalloc(sizeof(struct video_device), GFP_KERNEL); // 3. 分配 media_device 结构体内存 msm_v4l2_dev->mdev = kzalloc(sizeof(struct media_device), GFP_KERNEL); strlcpy(msm_v4l2_dev->mdev->model, MSM_CONFIGURATION_NAME, sizeof(msm_v4l2_dev->mdev->model)); // msm_config msm_v4l2_dev->mdev->dev = &(pdev->dev); // 4. 注册 media_device , 使用的 v4l2 rc = media_device_register(msm_v4l2_dev->mdev); pvdev->vdev->entity.type = MEDIA_ENT_T_DEVNODE_V4L; // V4L pvdev->vdev->entity.group_id = QCAMERA_VNODE_GROUP_ID; // #define QCAMERA_VNODE_GROUP_ID 2 msm_v4l2_dev->notify = msm_sd_notify; // 用于发现对应的 subdev pvdev->vdev->v4l2_dev = msm_v4l2_dev; // 5. 注册 v4l2_device rc = v4l2_device_register(&(pdev->dev), pvdev->vdev->v4l2_dev); // 6. 注册 video_device设备 strlcpy(pvdev->vdev->name, "msm-config", sizeof(pvdev->vdev->name)); pvdev->vdev->release = video_device_release; pvdev->vdev->fops = &msm_fops; // 配置 video_device 的字符设备操作函数 pvdev->vdev->ioctl_ops = &g_msm_ioctl_ops; // 配置 v4l2 IOCTRL pvdev->vdev->minor = -1; pvdev->vdev->vfl_type = VFL_TYPE_GRABBER; rc = video_register_device(pvdev->vdev, VFL_TYPE_GRABBER, -1); // 7. 将当前 msm_video_device 结构体设为私有数据 video_set_drvdata(pvdev->vdev, pvdev); // 8. 分配 msm_queue_head 结构体内存 msm_session_q = kzalloc(sizeof(*msm_session_q), GFP_KERNEL); msm_init_queue(msm_session_q); // 9. 创建 camera 调试目录 cam_debugfs_root = debugfs_create_dir(MSM_CAM_LOGSYNC_FILE_BASEDIR, NULL); rc = cam_ahb_clk_init(pdev); of_property_read_u32(pdev->dev.of_node, "qcom,gpu-limit", &gpu_limit); goto probe_end; }
2.1 struct v4l2_device 结构体描述 @ \kernel\msm-4.4\include\media\v4l2-device.h struct v4l2_device { /* dev->driver_data points to this struct. Note: dev might be NULL if there is no parent device as is the case with e.g. ISA devices. */ struct device *dev; #if defined(CONFIG_MEDIA_CONTROLLER) struct media_device *mdev; #endif /* used to keep track of the registered subdevs */ struct list_head subdevs; /* lock this struct; can be used by the driver as well if this struct is embedded into a larger struct. */ spinlock_t lock; /* unique device name, by default the driver name + bus ID */ char name[V4L2_DEVICE_NAME_SIZE]; /* notify callback called by some sub-devices. */ void (*notify)(struct v4l2_subdev *sd, unsigned int notification, void *arg); /* The control handler. May be NULL. */ struct v4l2_ctrl_handler *ctrl_handler; /* Device's priority state */ struct v4l2_prio_state prio; /* Keep track of the references to this struct. */ struct kref ref; /* Release function that is called when the ref count goes to 0. */ void (*release)(struct v4l2_device *v4l2_dev); };
2.2 struct msm_video_device 结构体描述 @ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.h struct msm_video_device { struct video_device *vdev; atomic_t opened; struct mutex video_drvdata_mutex; };
2.3 struct media_device 结构体描述 struct media_device { /* dev->driver_data points to this struct. */ struct device *dev; // Parent device struct media_devnode devnode; // Media device node char model[32]; // Device model name char serial[40]; // Device serial number (optional) char bus_info[32]; // Unique and stable device location identifier u32 hw_revision; // Hardware device revision u32 driver_version; // Device driver version u32 entity_id; // ID of the next entity to be registered struct list_head entities; // List of registered entities /* Protects the entities list */ spinlock_t lock; // Entities list lock /* Serializes graph operations. */ struct mutex graph_mutex; // Entities graph operation lock int (*link_notify)(struct media_link *link, u32 flags, unsigned int notification); // Link state change notification callback };
3. Sensor 驱动

还是从 dts 开始看,前面我们配置camera sensor时,节点为 compatible = "qcom,camera";
对应代码在\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c

在代码中,将 qcom,camera注册在平台驱动中,并注册对应的sensor i2c 驱动。

@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c static const struct of_device_id msm_sensor_driver_dt_match[] = { {.compatible = "qcom,camera"}, {} }; MODULE_DEVICE_TABLE(of, msm_sensor_driver_dt_match); static struct platform_driver msm_sensor_platform_driver = { .probe = msm_sensor_driver_platform_probe, .driver = { .name = "qcom,camera", .owner = THIS_MODULE, .of_match_table = msm_sensor_driver_dt_match, }, .remove = msm_sensor_platform_remove, }; static struct i2c_driver msm_sensor_driver_i2c = { .id_table = i2c_id, .probe = msm_sensor_driver_i2c_probe, .remove = msm_sensor_driver_i2c_remove, .driver = { .name = SENSOR_DRIVER_I2C, }, }; static int __init msm_sensor_driver_init(void) { rc = platform_driver_register(&msm_sensor_platform_driver); rc = i2c_add_driver(&msm_sensor_driver_i2c); return rc; }
3.1 平台驱动probe函数 msm_sensor_driver_platform_probe()

msm_sensor_driver_platform_probe函数中,其主要工作如下:

创建并分配 msm_sensor_ctrl_t结构体内存。 将sensor device type初始化为 MSM_CAMERA_PLATFORM_DEVICE 解析 节点为 compatible = "qcom,camera";的 dts 内容 解析dts 中配置的camera clk 信息
clock-names = "cam_src_clk", "cam_clk";
qcom,clock-rates = ; @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c static int32_t msm_sensor_driver_platform_probe(struct platform_device *pdev) { int32_t rc = 0; struct msm_sensor_ctrl_t *s_ctrl = NULL; // 1. 创建并分配 msm_sensor_ctrl_t 结构体内存。 /* Create sensor control structure */ s_ctrl = kzalloc(sizeof(*s_ctrl), GFP_KERNEL); platform_set_drvdata(pdev, s_ctrl); // 2. 将sensor device type 初始化为 MSM_CAMERA_PLATFORM_DEVICE /* Initialize sensor device type */ s_ctrl->sensor_device_type = MSM_CAMERA_PLATFORM_DEVICE; s_ctrl->of_node = pdev->dev.of_node; /*fill in platform device*/ s_ctrl->pdev = pdev; // 3. 解析 节点为 compatible = "qcom,camera"; 的 dts 内容 rc = msm_sensor_driver_parse(s_ctrl); ==========================> | static int32_t msm_sensor_driver_parse(struct msm_sensor_ctrl_t *s_ctrl) | { | /* Allocate memory for sensor_i2c_client */ | s_ctrl->sensor_i2c_client = kzalloc(sizeof(*s_ctrl->sensor_i2c_client), GFP_KERNEL); | | /* Parse dt information and store in sensor control structure */ | rc = msm_sensor_driver_get_dt_data(s_ctrl); // 解析Camera DTS 节点,详见 Chapter 3.2 | | /* Initilize v4l2 subdev info */ | s_ctrl->sensor_v4l2_subdev_info = msm_sensor_driver_subdev_info; | s_ctrl->sensor_v4l2_subdev_info_size = ARRAY_SIZE(msm_sensor_driver_subdev_info); | | /* Initialize default parameters */ | rc = msm_sensor_init_default_params(s_ctrl); // 初始化默认参数 | | // 将 sensor ctrl 节构体保存在 g_sctrl 数组中。 | /* Store sensor control structure in static database */ | g_sctrl[s_ctrl->id] = s_ctrl; | CDBG("g_sctrl[%d] %pK", s_ctrl->id, g_sctrl[s_ctrl->id]); | return rc; | } <========================== // 4. 解析dts 中配置的camera clk 信息 // 解析 clock-names = "cam_src_clk", "cam_clk"; // 解析 qcom,clock-rates = ; /* Get clocks information */ rc = msm_camera_get_clk_info(s_ctrl->pdev, &s_ctrl->sensordata->power_info.clk_info, &s_ctrl->sensordata->power_info.clk_ptr, &s_ctrl->sensordata->power_info.clk_info_size); ===========================> | // @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\common\cam_soc_api.c | rc = msm_camera_get_clk_info_internal(&pdev->dev, clk_info, clk_ptr, num_clk); id = s_ctrl->id; /* Fill device in power info */ s_ctrl->sensordata->power_info.dev = &pdev->dev; return rc; }
3.2 解析Camera DTS 节点 msm_sensor_driver_get_dt_data()

在该函数中主要是对dts 中配置的camera 节点解析,工作如下:

初始化 msm_camera_sensor_board_info结构体并分配对应的内存 解析 cell-index = ,以此为camera 数组计数 id 检测 camera id 是否大于系统最大支持数量 判断 msm_sensor_ctrl 全局数组中当前id 是否已经初始化 解析Camera 外设信息,包括 "qcom,actuator-src"、"qcom,ois-src"、"qcom,eeprom-src"、"qcom,led-flash-src"、"qcom,csiphy-sd-index" 解析Camera 电压配置,qcom,cam-vreg-name = "cam_vio", "cam_vana", "cam_vdig", "cam_vaf"; 解析Camera GPIO配置
解析 "qcom,gpio-req-tbl-num"、"qcom,gpio-req-tbl-flags"、"qcom,gpio-req-tbl-label"
如果配置了使用gpio 供电的话,则在此初化始化,"qcom,gpio-vana"、"qcom,gpio-vio"、"qcom,gpio-vaf"、"qcom,gpio-vdig"、"qcom,gpio-reset"、"qcom,gpio-standby"、"qcom,gpio-flash-en" 解析I2C master ,"qcom,cci-master = ;" 解析摄像头旋转角度"qcom,mount-angle",如果没有配置默认设置为0 解析sensor 前后摄"qcom,sensor-position" 解析"qcom,sensor-mode" @ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c static int32_t msm_sensor_driver_get_dt_data(struct msm_sensor_ctrl_t *s_ctrl) { int32_t rc = 0, i = 0; struct msm_camera_sensor_board_info *sensordata = NULL; struct device_node *of_node = s_ctrl->of_node; uint32_t cell_id; // 1. 初始化 msm_camera_sensor_board_info 结构体并分配对应的内存 s_ctrl->sensordata = kzalloc(sizeof(*sensordata), GFP_KERNEL); sensordata = s_ctrl->sensordata; // 2. 解析 cell-index = ,以此为camera 数组计数 id /** Read cell index - this cell index will be the camera slot where this camera will be mounted */ rc = of_property_read_u32(of_node, "cell-index", &cell_id); s_ctrl->id = cell_id; // 3. 检测camera id是否大于系统最大支持数量 if (cell_id >= MAX_CAMERAS) { pr_err("failed: invalid cell_id %d", cell_id); rc = -EINVAL; goto FREE_SENSOR_DATA; } // 4. 判断全msm_sensor_ctrl 全局数组中当前id 是否已经初始化 /* Check whether g_sctrl is already filled for this cell_id */ if (g_sctrl[cell_id]) { pr_err("failed: sctrl already filled for cell_id %d", cell_id); rc = -EINVAL; goto FREE_SENSOR_DATA; } // 5. 解析Camera 外设信息,包括 "qcom,actuator-src"、"qcom,ois-src"、"qcom,eeprom-src"、 // "qcom,led-flash-src"、"qcom,csiphy-sd-index" /* Read subdev info */ rc = msm_sensor_get_sub_module_index(of_node, &sensordata->sensor_info); ==================> + //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c + int msm_sensor_get_sub_module_index(struct device_node *of_node, struct msm_sensor_info_t **s_info) + { + struct msm_sensor_info_t *sensor_info; + sensor_info = kzalloc(sizeof(*sensor_info), GFP_KERNEL); + + for (i = 0; i subdev_id[i] = -1; /* Subdev expose additional interface for same sub module*/ + sensor_info->subdev_intf[i] = -1; + } + src_node = of_parse_phandle(of_node, "qcom,actuator-src", 0); + sensor_info->subdev_id[SUB_MODULE_ACTUATOR] = val; + + src_node = of_parse_phandle(of_node, "qcom,ois-src", 0); + sensor_info->subdev_id[SUB_MODULE_OIS] = val; + + src_node = of_parse_phandle(of_node, "qcom,eeprom-src", 0); + sensor_info->subdev_id[SUB_MODULE_EEPROM] = val; + + src_node = of_parse_phandle(of_node, "qcom,led-flash-src", 0); + sensor_info->subdev_id[SUB_MODULE_LED_FLASH] = val; + + if (of_get_property(of_node, "qcom,csiphy-sd-index", &count)) { + count /= sizeof(uint32_t); + val_array = kzalloc(sizeof(uint32_t) * count, GFP_KERNEL); + rc = of_property_read_u32_array(of_node, "qcom,csiphy-sd-index", val_array, count); + for (i = 0; i subdev_id[SUB_MODULE_CSIPHY + i] = val_array[i]; + CDBG("%s csiphy_core[%d] = %d\n", __func__, i, val_array[i]); + } + //.... 省略一部分解析代码 power_info.cam_vreg, &sensordata->power_info.num_vreg); ==================> + //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c + int msm_camera_get_dt_vreg_data(struct device_node *of_node, struct camera_vreg_t **cam_vreg, int *num_vreg) + { + count = of_property_count_strings(of_node, "qcom,cam-vreg-name"); + CDBG("%s qcom,cam-vreg-name count %d\n", __func__, count); + vreg = kzalloc(sizeof(*vreg) * count, GFP_KERNEL); + *cam_vreg = vreg; + *num_vreg = count; + for (i = 0; i < count; i++) { + rc = of_property_read_string_index(of_node, "qcom,cam-vreg-name", i, &vreg[i].reg_name); + CDBG("%s reg_name[%d] = %s\n", __func__, i,vreg[i].reg_name); + } + //.... 省略一部分解析代码 + } power_info.gpio_conf), of_node); ==================> + //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c + int32_t msm_sensor_driver_get_gpio_data(struct msm_camera_gpio_conf **gpio_conf, struct device_node *of_node) + { + uint16_t *gpio_array = NULL; + struct msm_camera_gpio_conf *gconf = NULL; + gpio_array_size = of_gpio_count(of_node); + gconf = kzalloc(sizeof(struct msm_camera_gpio_conf), + *gpio_conf = gconf; + + // 解析 "qcom,gpio-req-tbl-num"、"qcom,gpio-req-tbl-flags"、"qcom,gpio-req-tbl-label" + rc = msm_camera_get_dt_gpio_req_tbl(of_node, gconf, gpio_array, gpio_array_size); + ============> + + of_get_property(of_node, "qcom,gpio-req-tbl-num", &count) + + rc = of_property_read_u32_array(of_node, "qcom,gpio-req-tbl-num", val_array, count); + + rc = of_property_read_u32_array(of_node, "qcom,gpio-req-tbl-flags", val_array, count); + + for (i = 0; i cam_gpio_req_tbl[i].label); + + CDBG("%s cam_gpio_req_tbl[%d].label = %s\n", __func__, i,gconf->cam_gpio_req_tbl[i].label); + + } + + rc = of_property_read_u32(of_node, "qcom,gpio-vana", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VANA] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-vio", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VIO] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-vaf", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VAF] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-vdig", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VDIG] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-reset", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_RESET] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-standby", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_STANDBY] =gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-af-pwdm", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_AF_PWDM] = gpio_array[val]; + rc = of_property_read_u32(of_node, "qcom,gpio-flash-en", &val); + gconf->gpio_num_info->gpio_num[SENSOR_GPIO_FL_EN] = gpio_array[val]; + //.... 省略一部分解析代码 + <=========== + } <================== // 8. 解析I2C master ,"qcom,cci-master = ;" /* Get CCI master */ rc = of_property_read_u32(of_node, "qcom,cci-master", &s_ctrl->cci_i2c_master); CDBG("qcom,cci-master %d, rc %d", s_ctrl->cci_i2c_master, rc); // 9. 解析摄像头旋转角度"qcom,mount-angle",如果没有配置默认设置为0 /* Get mount angle */ if (0 > of_property_read_u32(of_node, "qcom,mount-angle", &sensordata->sensor_info->sensor_mount_angle)) { /* Invalidate mount angle flag */ sensordata->sensor_info->is_mount_angle_valid = 0; sensordata->sensor_info->sensor_mount_angle = 0; } else { sensordata->sensor_info->is_mount_angle_valid = 1; } CDBG("%s qcom,mount-angle %d\n", __func__,sensordata->sensor_info->sensor_mount_angle); // 10. 解析sensor 前后摄"qcom,sensor-position" if (0 > of_property_read_u32(of_node, "qcom,sensor-position",&sensordata->sensor_info->position)) { CDBG("%s:%d Invalid sensor position\n", __func__, __LINE__); sensordata->sensor_info->position = INVALID_CAMERA_B; } // 11. 解析sensor-mode if (0 > of_property_read_u32(of_node, "qcom,sensor-mode", &sensordata->sensor_info->modes_supported)) { CDBG("%s:%d Invalid sensor mode supported\n", __func__, __LINE__); sensordata->sensor_info->modes_supported = CAMERA_MODE_INVALID; } /* Get vdd-cx regulator */ /*Optional property, don't return error if absent */ of_property_read_string(of_node, "qcom,vdd-cx-name",&sensordata->misc_regulator); CDBG("qcom,misc_regulator %s", sensordata->misc_regulator); s_ctrl->set_mclk_23880000 = of_property_read_bool(of_node,"qcom,mclk-23880000"); CDBG("%s qcom,mclk-23880000 = %d\n", __func__,s_ctrl->set_mclk_23880000); return rc; }
3.2.1 msm_camera_sensor_board_info 结构体描述

在msm_camera_sensor_board_info 中保存了所有camera 及硬件相关的name及参数。

//@ \kernel\msm-4.4\include\soc\qcom\camera2.h struct msm_camera_sensor_board_info { const char *sensor_name; // camera sensor name const char *eeprom_name; // eeprom name const char *actuator_name; // actuator name const char *ois_name; // ois name const char *flash_name; // flashlight name const char *special_support_sensors[MAX_SPECIAL_SUPPORT_SIZE]; int32_t special_support_size; struct msm_camera_slave_info *slave_info; // i2c addr struct msm_camera_csi_lane_params *csi_lane_params; struct msm_camera_sensor_strobe_flash_data *strobe_flash_data; struct msm_actuator_info *actuator_info; struct msm_sensor_info_t *sensor_info; const char *misc_regulator; struct msm_camera_power_ctrl_t power_info; struct msm_camera_sensor_slave_info *cam_slave_info; }; 3.2.2 Camera 支持的外设类型 sensor_sub_module_t @ \kernel\msm-4.4\include\uapi\media\msm_cam_sensor.h enum sensor_sub_module_t { SUB_MODULE_SENSOR, SUB_MODULE_CHROMATIX, SUB_MODULE_ACTUATOR, SUB_MODULE_EEPROM, SUB_MODULE_LED_FLASH, SUB_MODULE_STROBE_FLASH, SUB_MODULE_CSID, SUB_MODULE_CSID_3D, SUB_MODULE_CSIPHY, SUB_MODULE_CSIPHY_3D, SUB_MODULE_OIS, SUB_MODULE_EXT, SUB_MODULE_IR_LED, SUB_MODULE_IR_CUT, SUB_MODULE_MAX, };
3.3 【重点】全局CameraSensorCtrol数组g_sctrl

g_sctrl 是静态全局的一个msm_sensor_ctrl_t * 结构体指针数组,其定义如下:

/* Static declaration */ static struct msm_sensor_ctrl_t *g_sctrl[MAX_CAMERAS];

前面我们在配置dts 时也发现了,通常我们要配置的camera数量是大于1的,前面代码中,我们配置了3个Camera,两个后摄,一个前摄。而这三个camera dts 中的节点都是一样的"qcom,camera"
可以看出,驱动和设备会匹配三次,换句话说,也就是 msm_sensor_driver_platform_probe()函数会走三次,每次传递的dts节点内容是不一样的,三个camera都会依次probe 一次,
从而,当probe 完毕后,会保存三个struct msm_sensor_ctrl_t *结构体的数据保存在全局 g_sctrl 中。

至此,我们代码中,就把dts 的内容成功的转化为了msm_sensor_ctrl_t结构体保存在 全局 g_sctrl 中。


3.4 【重点】摄像头probe 函数 msm_sensor_driver_probe()

本章3.1 中我们分析过了 平台驱动probe函数 msm_sensor_driver_platform_probe(),这个函数主要作用还是解析DTS,但并不会真正probe camera sensor。
那问题来了,camera sensor probe 是在什么时候呢?

其实,camera probe 并不是和其他kernerl 驱动一样,在初始化时就probe,而是通过hal 层下发 probe 指令来控制probe 的。

3.4.1 hal层函数 module_sensor_init()

hal层代码位于 \vendor\qcom\proprietary\mm-camera\mm-camera2\media-controller\modules\sensors\module\module_sensor.c

//@\vendor\qcom\proprietary\mm-camera\mm-camera2\media-controller\modules\sensors\module\module_sensor.c mct_module_t *module_sensor_init(const char *name) { ...... /* module_sensor_probe_sensors */ ret = sensor_init_probe(module_ctrl); /* find all the actuator, etc with sensor */ ret = module_sensor_find_other_subdev(module_ctrl); /* Init sensor modules */ ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensors_subinit,NULL); /* intiialize the eeprom */ ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensor_init_eeprom,module_ctrl->eebin_hdl); /* Create chromatix manager */ ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensor_init_chromatix, module_ctrl->eebin_hdl); /* Initialize dual cam stream mutex */ pthread_mutex_init(&module_ctrl->dual_cam_mutex, NULL); }
3.4.2 hal层函数 sensor_init_probe()

上层代码逻辑我们后续会详细分析,并不是我们本章的重点,我们重点关注sensor_init_probe(),其内容如下:

sensor_init_eebin_probe()中,我们可以看出,知道camera 数量后,在for循环中,依次调用 sensor_probe()函数初始化每个camera,我们当前代码中有三个camera,这面就会调用三次sensor_probe()
至于 hal 层中又是如何知道我们是三个camera的,后续我们分析到hal 层再说吧。

/** sensor_init_probe: probe available sensors * * @module_ctrl: sensor ctrl pointer * * Return: 0 for success and negative error on failure * * 1) Find sensor_init subdev and it * 2) Open EEPROM subdev and check whether any sensor library * is present in EEPROM * 3) Open sensor libraries present in dumped firware location * 4) Check library version of EEPROM and dumped firmware * 5) Load latest of both * 6) Pass slave information, power up and probe sensors * 7) If probe succeeds, create video node and sensor subdev * 8) Repeat step 2-8 for all sensor libraries present in * EEPROM * 9) Repeat step 6-8 for all sensor libraries present in * absolute path **/ boolean sensor_init_probe(module_sensor_ctrl_t *module_ctrl) { ...... ret = sensor_init_eebin_probe(module_ctrl, sd_fd); ...... } static boolean sensor_init_eebin_probe(module_sensor_ctrl_t *module_ctrl,int32_t sd_fd) { SLOW("Enter"); bin_ctl.cmd = EEPROM_BIN_GET_NUM_DEV; bin_ctl.ctl.q_num.type = EEPROM_BIN_LIB_SENSOR; bin_ctl.ctl.q_num.num_devs = 0; eebin_interface_control(module_ctrl->eebin_hdl, &bin_ctl); num_devs = bin_ctl.ctl.q_num.num_devs; SLOW("num_devs:%d", num_devs); for (i = 0; i eebin_hdl, &bin_ctl); if (rc < 0) continue; ret = sensor_probe(module_ctrl, sd_fd, bin_ctl.ctl.dev_data.name, bin_ctl.ctl.dev_data.path, NULL, FALSE, FALSE); if (ret == FALSE) { SINFO("failed: to load %s", bin_ctl.ctl.dev_data.name); } } SLOW("Exit"); return TRUE; }
3.4.3 hal层函数 sensor_probe() 下发 CFG_SINIT_PROBE

进入 sensor_probe()函数:
在函数中可以看出,首先会调用 sensor_load_library()加载vendor 中camera sensor 的库文件。
接着通过 IOCTRL 向通过下发 CFG_SINIT_PROBE消息,通知驱动层作probe 初始化。

/** sensor_probe: probe available sensors * @fd: sensor_init fd * @sensor_name: sensor name * Return: TRUE for success and FALSE for failure * 1) Open sensor library * 2) Pass slave information, probe sensor * 3) If probe succeeds, create video node and sensor subdev is * created in kernel **/ static boolean sensor_probe(module_sensor_ctrl_t *module_ctrl, int32_t fd, const char *sensor_name, char *path, struct xmlCameraConfigInfo *xmlConfig, boolean is_stereo_config, boolean bypass_video_node_creation) { /* Load sensor library */ rc = sensor_load_library(sensor_name, sensor_lib_params, path); ...... /* Pass slave information to kernel and probe */ memset(&cfg, 0, sizeof(cfg)); cfg.cfgtype = CFG_SINIT_PROBE; cfg.cfg.setting = slave_info; if (ioctl(fd, VIDIOC_MSM_SENSOR_INIT_CFG, &cfg) < 0) { SINFO("[%s]CFG_SINIT_PROBE failed",sensor_name); ret = FALSE; goto ERROR; } if (cfg.probed_info.session_id == 0 && FALSE == bypass_video_node_creation) { SINFO("[%s] probe failed.", sensor_name); ret = FALSE; goto ERROR; } SHIGH("[%s] probe succeeded: session_id(%d) entity_name(%s)",sensor_name, cfg.probed_info.session_id, cfg.entity_name); ...... }

IOCTRL 命令定义如下:

/* sensor init structures and enums */ enum msm_sensor_init_cfg_type_t { CFG_SINIT_PROBE, CFG_SINIT_PROBE_DONE, CFG_SINIT_PROBE_WAIT_DONE, };
3.4.4 Kernel Ioctl 函数 msm_sensor_init_subdev_ioctl()

上层IOCTRL 命令下发到kernerl 中,进入msm_sensor_init_subdev_ioctl()中,接着转发到msm_sensor_driver_cmd()中,调用 msm_sensor_driver_probe()函数

// @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_init.c static long msm_sensor_init_subdev_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { switch (cmd) { case VIDIOC_MSM_SENSOR_INIT_CFG: rc = msm_sensor_driver_cmd(s_init, arg); break; } } /* Static function definition */ static int32_t msm_sensor_driver_cmd(struct msm_sensor_init_t *s_init, void *arg) { switch (cfg->cfgtype) { case CFG_SINIT_PROBE: mutex_lock(&s_init->imutex); s_init->module_init_status = 0; rc = msm_sensor_driver_probe(cfg->cfg.setting, &cfg->probed_info, cfg->entity_name); mutex_unlock(&s_init->imutex); if (rc module_init_status = 1; wake_up(&s_init->state_wait); break; case CFG_SINIT_PROBE_WAIT_DONE: msm_sensor_wait_for_probe_done(s_init); break; return rc; }
3.4.5 probe函数 msm_sensor_driver_probe()

从上层开始下发probe 命令,至此正式开始probe 初始化 camera,代码如下:

初始化并分配 slave_info 内存 将上层下发的 slave_info保存在 slave_info32 中 将 slave_info32 中的信息保存到 slave_info中。 打印 slave info 信息 通过camera id 获取到对应的 camera sensor ctrol 信息,也就是对应的camera 的dts 信息。 检测sensor 是否已经probe 过了,如果不是,直接跳过if 进行probe 获取camera的power settting 初始化 msm_camera_slave_info 结构体变量 camera_info ,用于保存 camera 的信息 配置camera i2c 相关信息 往s_ctrl 中填充 上下电相关信息 解析该camera 中所有外设 dts 节点信息 "qcom,eeprom-src"、"qcom,actuator-src"、"qcom,led-flash-src" 调用 sensor_power_up()给sensor 上电,开始probe sensor ,上电时调用 msm_sensor_check_id(),然后调用msm_sensor_match_id()检测 sensor id 是否区配。 创建对应的 /dev/videox 节点 及 /dev/mediax 的节点 probe 成功后下电 更新s_ctrl 结构体信息 // @ kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c int32_t msm_sensor_driver_probe(void *setting, struct msm_sensor_info_t *probed_info, char *entity_name) { struct msm_sensor_ctrl_t *s_ctrl = NULL; struct msm_camera_cci_client *cci_client = NULL; struct msm_camera_sensor_slave_info *slave_info = NULL; struct msm_camera_slave_info *camera_info = NULL; // 1. 初始化并分配 slave_info 内存 /* Allocate memory for slave info */ slave_info = kzalloc(sizeof(*slave_info), GFP_KERNEL); if (is_compat_task()) { // 2. 将上层下发的 slave_info保存在 slave_info32 中 struct msm_camera_sensor_slave_info32 *slave_info32 =kzalloc(sizeof(*slave_info32), GFP_KERNEL); copy_from_user((void *)slave_info32, setting, sizeof(*slave_info32)); // 3. 将 slave_info32 中的信息保存到 slave_info中。 strlcpy(slave_info->actuator_name, slave_info32->actuator_name, sizeof(slave_info->actuator_name)); strlcpy(slave_info->eeprom_name, slave_info32->eeprom_name, sizeof(slave_info->eeprom_name)); strlcpy(slave_info->sensor_name, slave_info32->sensor_name, sizeof(slave_info->sensor_name)); strlcpy(slave_info->ois_name, slave_info32->ois_name, sizeof(slave_info->ois_name)); strlcpy(slave_info->flash_name, slave_info32->flash_name, sizeof(slave_info->flash_name)); slave_info->addr_type = slave_info32->addr_type; slave_info->camera_id = slave_info32->camera_id; slave_info->i2c_freq_mode = slave_info32->i2c_freq_mode; slave_info->sensor_id_info = slave_info32->sensor_id_info; slave_info->slave_addr = slave_info32->slave_addr; slave_info->module_id_info = slave_info32->module_id_info; slave_info->power_setting_array.size = slave_info32->power_setting_array.size; slave_info->power_setting_array.size_down = slave_info32->power_setting_array.size_down; slave_info->power_setting_array.size_down = slave_info32->power_setting_array.size_down; slave_info->power_setting_array.power_setting = compat_ptr(slave_info32->power_setting_array.power_setting); slave_info->power_setting_array.power_down_setting = compat_ptr(slave_info32->power_setting_array.power_down_setting); slave_info->sensor_init_params = slave_info32->sensor_init_params; slave_info->output_format =slave_ info32->output_format; kfree(slave_info32); // 保存完毕合释放 slave_info32 内存。 } else #endif { if (copy_from_user(slave_info,(void *)setting, sizeof(*slave_info))) { pr_err("failed: copy_from_user"); rc = -EFAULT; goto free_slave_info; } } // 4. 打印 slave info 信息 /* Print slave info */ CDBG("camera id %d Slave addr 0x%X addr_type %d\n", slave_info->camera_id, slave_info->slave_addr, slave_info->addr_type); CDBG("sensor_id_reg_addr 0x%X sensor_id 0x%X sensor id mask %d", slave_info->sensor_id_info.sensor_id_reg_addr, slave_info->sensor_id_info.sensor_id,slave_info->sensor_id_info.sensor_id_mask); CDBG("power up size %d power down size %d\n",slave_info->power_setting_array.size,slave_info->power_setting_array.size_down); CDBG("position %d",slave_info->sensor_init_params.position); CDBG("mount %d",slave_info->sensor_init_params.sensor_mount_angle); // 5. 通过camera id 获取到对应的 camera sensor ctrol 信息,也就是对应的camera 的dts 信息。 /* Extract s_ctrl from camera id */ s_ctrl = g_sctrl[slave_info->camera_id]; CDBG("s_ctrl[%d] %pK", slave_info->camera_id, s_ctrl); // 6. 检测sensor 是否已经probe 过了,如果不是,直接跳过if 进行probe if (s_ctrl->is_probe_succeed == 1) { /* * Different sensor on this camera slot has been connected * and probe already succeeded for that sensor. Ignore this * probe */ ...... } // 7. 获取camera的power settting rc = msm_sensor_get_power_settings(setting, slave_info,&s_ctrl->sensordata->power_info); // 8. 初始化 msm_camera_slave_info 结构体变量 camera_info ,用于保存 camera 的信息 camera_info = kzalloc(sizeof(struct msm_camera_slave_info), GFP_KERNEL); s_ctrl->sensordata->slave_info = camera_info; /* Fill sensor slave info */ camera_info->sensor_slave_addr = slave_info->slave_addr; camera_info->eeprom_slave_addr = slave_info->module_id_info.module_slave_id; camera_info->eeprom_module_reg_addr = slave_info->module_id_info.module_id_reg_addr; camera_info->eeprom_module_id = slave_info->module_id_info.module_id; camera_info->eeprom_master_id = slave_info->module_id_info.master_id; camera_info->sensor_id_reg_addr =slave_info->sensor_id_info.sensor_id_reg_addr; camera_info->sensor_id = slave_info->sensor_id_info.sensor_id; camera_info->sensor_id_mask = slave_info->sensor_id_info.sensor_id_mask; s_ctrl->sensor_i2c_client->addr_type = slave_info->addr_type; if (s_ctrl->sensor_i2c_client->client) s_ctrl->sensor_i2c_client->client->addr =camera_info->sensor_slave_addr; // 9. 配置camera i2c 相关信息。 cci_client = s_ctrl->sensor_i2c_client->cci_client; cci_client->cci_i2c_master = s_ctrl->cci_i2c_master; cci_client->sid = slave_info->slave_addr >> 1; cci_client->retries = 3; cci_client->id_map = 0; cci_client->i2c_freq_mode = slave_info->i2c_freq_mode; // 10. 往s_ctrl 中填充 上下电相关信息 /* Parse and fill vreg params for powerup settings */ rc = msm_camera_fill_vreg_params( s_ctrl->sensordata->power_info.cam_vreg, s_ctrl->sensordata->power_info.num_vreg, s_ctrl->sensordata->power_info.power_setting, s_ctrl->sensordata->power_info.power_setting_size); /* Parse and fill vreg params for powerdown settings*/ rc = msm_camera_fill_vreg_params( s_ctrl->sensordata->power_info.cam_vreg, s_ctrl->sensordata->power_info.num_vreg, s_ctrl->sensordata->power_info.power_down_setting, s_ctrl->sensordata->power_info.power_down_setting_size); CSID_TG: /* Update sensor, actuator and eeprom name in * sensor control structure */ s_ctrl->sensordata->sensor_name = slave_info->sensor_name; s_ctrl->sensordata->eeprom_name = slave_info->eeprom_name; s_ctrl->sensordata->actuator_name = slave_info->actuator_name; s_ctrl->sensordata->ois_name = slave_info->ois_name; s_ctrl->sensordata->flash_name = slave_info->flash_name; /* * Update eeporm subdevice Id by input eeprom name */ // 11. 解析该camera 中所有外设节点信息 "qcom,eeprom-src"、"qcom,actuator-src"、"qcom,led-flash-src" rc = msm_sensor_fill_eeprom_subdevid_by_name(s_ctrl); =====> src_node = of_parse_phandle(of_node, "qcom,eeprom-src", i); /* * Update actuator subdevice Id by input actuator name */ rc = msm_sensor_fill_actuator_subdevid_by_name(s_ctrl); =====> src_node = of_parse_phandle(of_node, "qcom,actuator-src", 0); rc = msm_sensor_fill_ois_subdevid_by_name(s_ctrl); rc = msm_sensor_fill_flash_subdevid_by_name(s_ctrl); =====> src_node = of_parse_phandle(of_node, "qcom,led-flash-src", 0); // 12. 调用 sensor_power_up() 给sensor 上电,开始probe sensor ,上电时调用 msm_sensor_check_id(),然后调用msm_sensor_match_id()检测sensor id 是否区配。 /* Power up and probe sensor */ rc = s_ctrl->func_tbl->sensor_power_up(s_ctrl); ==================> @ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor.c for (retry = 0; retry sensor_i2c_client->i2c_func_tbl =&msm_sensor_secure_func_tbl; rc = msm_camera_power_up(power_info, s_ctrl->sensor_device_type, sensor_i2c_client); rc = msm_sensor_check_id(s_ctrl); ========> rc = msm_sensor_match_id(s_ctrl); <======= if (rc sensor_device_type, sensor_i2c_client); msleep(20); continue; } else { break; } } sensor_name); /* * Create /dev/videoX node, comment for now until dummy /dev/videoX * node is created and used by HAL */ if (s_ctrl->sensor_device_type == MSM_CAMERA_PLATFORM_DEVICE) rc = msm_sensor_driver_create_v4l_subdev(s_ctrl); // 14. probe 成功后下电 /* Power down */ s_ctrl->func_tbl->sensor_power_down(s_ctrl); rc = msm_sensor_fill_slave_info_init_params(slave_info,s_ctrl->sensordata->sensor_info); rc = msm_sensor_validate_slave_info(s_ctrl->sensordata->sensor_info); /* Update sensor mount angle and position in media entity flag */ is_yuv = (slave_info->output_format == MSM_SENSOR_YCBCR) ? 1 : 0; mount_pos = ((s_ctrl->is_secure & 0x1) << 26) | is_yuv <sensordata->sensor_info->position <sensordata-> sensor_info->sensor_mount_angle / 90) <msm_sd.sd.entity.flags = mount_pos | MEDIA_ENT_FL_DEFAULT; /*Save sensor info*/ s_ctrl->sensordata->cam_slave_info = slave_info; // 15. 更新s_ctrl 结构体信息 msm_sensor_fill_sensor_info(s_ctrl, probed_info, entity_name); /* * Set probe succeeded flag to 1 so that no other camera shall * probed on this slot */ s_ctrl->is_probe_succeed = 1; return rc; }
3.4.6 创建 /dev/videoX节点 msm_sensor_driver_create_v4l_subdev() @ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\camera\camera.c static int32_t msm_sensor_driver_create_v4l_subdev(struct msm_sensor_ctrl_t *s_ctrl) { int32_t rc = 0; uint32_t session_id = 0; // 1. 初始化 msm_video_device 结构体,调用video_register_device() 注册video 节点 rc = camera_init_v4l2(&s_ctrl->pdev->dev, &session_id); ===============> pvdev = kzalloc(sizeof(struct msm_video_device),GFP_KERNEL); pvdev->vdev = video_device_alloc(); v4l2_dev = kzalloc(sizeof(struct v4l2_device), GFP_KERNEL); rc = v4l2_device_register(dev, pvdev->vdev->v4l2_dev); strlcpy(pvdev->vdev->name, "msm-sensor", sizeof(pvdev->vdev->name)); pvdev->vdev->release = video_device_release; pvdev->vdev->fops = &camera_v4l2_fops; pvdev->vdev->ioctl_ops = &camera_v4l2_ioctl_ops; pvdev->vdev->minor = -1; pvdev->vdev->vfl_type = VFL_TYPE_GRABBER; rc = video_register_device(pvdev->vdev,VFL_TYPE_GRABBER, -1); *session = pvdev->vdev->num; video_set_drvdata(pvdev->vdev, pvdev); sensordata->sensor_info->session_id = session_id; /* Create /dev/v4l-subdevX device */ v4l2_subdev_init(&s_ctrl->msm_sd.sd, s_ctrl->sensor_v4l2_subdev_ops); snprintf(s_ctrl->msm_sd.sd.name, sizeof(s_ctrl->msm_sd.sd.name), "%s",s_ctrl->sensordata->sensor_name); v4l2_set_subdevdata(&s_ctrl->msm_sd.sd, s_ctrl->pdev); s_ctrl->msm_sd.sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; media_entity_init(&s_ctrl->msm_sd.sd.entity, 0, NULL, 0); s_ctrl->msm_sd.sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV; s_ctrl->msm_sd.sd.entity.group_id = MSM_CAMERA_SUBDEV_SENSOR; s_ctrl->msm_sd.sd.entity.name = s_ctrl->msm_sd.sd.name; s_ctrl->msm_sd.close_seq = MSM_SD_CLOSE_2ND_CATEGORY | 0x3; rc = msm_sd_register(&s_ctrl->msm_sd); if (rc msm_sd.sd.devnode->fops =&msm_sensor_v4l2_subdev_fops; return rc; }
3.5 struct msm_sensor_ctrl_t 结构体描述 // @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor.h struct msm_sensor_ctrl_t { struct platform_device *pdev; struct mutex *msm_sensor_mutex; enum msm_camera_device_type_t sensor_device_type; struct msm_camera_sensor_board_info *sensordata; struct msm_sensor_power_setting_array power_setting_array; struct msm_sensor_packed_cfg_t *cfg_override; struct msm_sd_subdev msm_sd; enum cci_i2c_master_t cci_i2c_master; struct msm_camera_i2c_client *sensor_i2c_client; struct v4l2_subdev_info *sensor_v4l2_subdev_info; uint8_t sensor_v4l2_subdev_info_size; struct v4l2_subdev_ops *sensor_v4l2_subdev_ops; struct msm_sensor_fn_t *func_tbl; struct msm_camera_i2c_reg_setting stop_setting; void *misc_regulator; enum msm_sensor_state_t sensor_state; uint8_t is_probe_succeed; uint32_t id; struct device_node *of_node; enum msm_camera_stream_type_t camera_stream_type; uint32_t set_mclk_23880000; uint8_t is_csid_tg_mode; uint32_t is_secure; };
4. Camera 驱动总结

通过前面的分析,我们再次验证了Kernel Camera 中的 camera及 Sensor 的两部份。

Camera 部分
通过解析compatible = "qcom,msm-cam";来初始化并注册好media_device 、v4l2_device、video_device 设备,同时生成/dev/media0节点。

Sensor 部分
通过解析compatible = "qcom,camera";来初始化调用probe解析camera sensor的dts节点信息,保存在全局g_sctrl 数组中。
然后,上层在初始化时,依次对每个sensor下发 ioctl 参数,触发其作初始化probe ,上电check_sensor_id 及 创建对应的 /dev/videoX 节点 及 /dev/mediaX 的节点

至此,给合我们之前的移植过程,我们就将Kernel 中的 dts 相关的部分通过代码流程分析清楚了。
接下来,我们来看下 LinuxKernel 中的 V4L2 机制。


作者:Jaimex8



kernel

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章