在前面《【高通SDM660平台】Camera 驱动 Bringup Guide》中,我们学习了如何移植Camera 驱动,今天开始,我们要结合代码,学习下Kernel 中Camera 驱动具体的原理。
Kernel 驱动中 高通把Camera系统分为 Camera 和 Sensor 两部分:
Camera 部分是通用的代码逻辑,该部分由msm_cam 设备作为 video设备 与 userspace 进行交互,Qcom自已的MIPI,ISP,CPP 等硬件设备都属于Camera部分。
Sensor 可以理解为外部设备,是不同产商生产的Camera sensor模组。开发者分只需要配置不同的Sensor模组,将其注册到msm_cam设备上,创建好对应的video 设备,其他具体的接口逻辑均由Camera部分来实现。
在实际工作时,camera video设备主要是提供一个v4l2接口,Camera 驱动在接收到event消息后,会把该event消息及其参数以Post event形式发出到hal 层中,hal层接收到camera 驱动post 上来的event,来调用对应的逻辑,如果要操作sensor ,刚调用对应的 video设备就可以了。
接下来,我们依次来看看 msm_cam、sensor、v4l2 这几部分的代码逻辑:
msm-cam是在dts 中定义的,
在\kernel\msm-4.4\arch\arm\boot\dts\qcom\sdm660-camera.dtsi
中我们看到如下代码:
qcom,msm-cam@ca00000 {
compatible = "qcom,msm-cam";
reg = ;
reg-names = "msm-cam";
status = "ok";
bus-vectors = "suspend", "svs", "nominal", "turbo";
qcom,bus-votes = ;
qcom,gpu-limit = ;
};
查找代码,我们可以看到,其注册的地方在\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.c
可以看出,msm-cam 是以平台驱动的形式注册在kernel 中。
static const struct of_device_id msm_dt_match[] = {
{.compatible = "qcom,msm-cam"},
{}
};
MODULE_DEVICE_TABLE(of, msm_dt_match);
static struct platform_driver msm_driver = {
.probe = msm_probe,
.driver = {
.name = "msm",
.owner = THIS_MODULE,
.of_match_table = msm_dt_match,
},
};
static int __init msm_init(void)
{
return platform_driver_register(&msm_driver);
}
初始化注册成功后,会调用msm_probe
函数,在该函数中,主要工作如下:
@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.c
static struct v4l2_device *msm_v4l2_dev; // 初始化一个 v4l2_device 类型的结构体
static int msm_probe(struct platform_device *pdev)
{
struct msm_video_device *pvdev = NULL;
static struct dentry *cam_debugfs_root;
// 1. 初始化一个 v4l2_device 类型的结构体,并分配好结构体内存
msm_v4l2_dev = kzalloc(sizeof(*msm_v4l2_dev), GFP_KERNEL);
pvdev = kzalloc(sizeof(struct msm_video_device), GFP_KERNEL);
// 2. 分配 video_device 结构体内存
pvdev->vdev = video_device_alloc();
// ---> kzalloc(sizeof(struct video_device), GFP_KERNEL);
// 3. 分配 media_device 结构体内存
msm_v4l2_dev->mdev = kzalloc(sizeof(struct media_device), GFP_KERNEL);
strlcpy(msm_v4l2_dev->mdev->model, MSM_CONFIGURATION_NAME, sizeof(msm_v4l2_dev->mdev->model)); // msm_config
msm_v4l2_dev->mdev->dev = &(pdev->dev);
// 4. 注册 media_device , 使用的 v4l2
rc = media_device_register(msm_v4l2_dev->mdev);
pvdev->vdev->entity.type = MEDIA_ENT_T_DEVNODE_V4L; // V4L
pvdev->vdev->entity.group_id = QCAMERA_VNODE_GROUP_ID; // #define QCAMERA_VNODE_GROUP_ID 2
msm_v4l2_dev->notify = msm_sd_notify; // 用于发现对应的 subdev
pvdev->vdev->v4l2_dev = msm_v4l2_dev;
// 5. 注册 v4l2_device
rc = v4l2_device_register(&(pdev->dev), pvdev->vdev->v4l2_dev);
// 6. 注册 video_device设备
strlcpy(pvdev->vdev->name, "msm-config", sizeof(pvdev->vdev->name));
pvdev->vdev->release = video_device_release;
pvdev->vdev->fops = &msm_fops; // 配置 video_device 的字符设备操作函数
pvdev->vdev->ioctl_ops = &g_msm_ioctl_ops; // 配置 v4l2 IOCTRL
pvdev->vdev->minor = -1;
pvdev->vdev->vfl_type = VFL_TYPE_GRABBER;
rc = video_register_device(pvdev->vdev, VFL_TYPE_GRABBER, -1);
// 7. 将当前 msm_video_device 结构体设为私有数据
video_set_drvdata(pvdev->vdev, pvdev);
// 8. 分配 msm_queue_head 结构体内存
msm_session_q = kzalloc(sizeof(*msm_session_q), GFP_KERNEL);
msm_init_queue(msm_session_q);
// 9. 创建 camera 调试目录
cam_debugfs_root = debugfs_create_dir(MSM_CAM_LOGSYNC_FILE_BASEDIR, NULL);
rc = cam_ahb_clk_init(pdev);
of_property_read_u32(pdev->dev.of_node,
"qcom,gpu-limit", &gpu_limit);
goto probe_end;
}
@ \kernel\msm-4.4\include\media\v4l2-device.h
struct v4l2_device {
/* dev->driver_data points to this struct.
Note: dev might be NULL if there is no parent device
as is the case with e.g. ISA devices. */
struct device *dev;
#if defined(CONFIG_MEDIA_CONTROLLER)
struct media_device *mdev;
#endif
/* used to keep track of the registered subdevs */
struct list_head subdevs;
/* lock this struct; can be used by the driver as well if this
struct is embedded into a larger struct. */
spinlock_t lock;
/* unique device name, by default the driver name + bus ID */
char name[V4L2_DEVICE_NAME_SIZE];
/* notify callback called by some sub-devices. */
void (*notify)(struct v4l2_subdev *sd,
unsigned int notification, void *arg);
/* The control handler. May be NULL. */
struct v4l2_ctrl_handler *ctrl_handler;
/* Device's priority state */
struct v4l2_prio_state prio;
/* Keep track of the references to this struct. */
struct kref ref;
/* Release function that is called when the ref count goes to 0. */
void (*release)(struct v4l2_device *v4l2_dev);
};
@ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\msm.h
struct msm_video_device {
struct video_device *vdev;
atomic_t opened;
struct mutex video_drvdata_mutex;
};
struct media_device {
/* dev->driver_data points to this struct. */
struct device *dev; // Parent device
struct media_devnode devnode; // Media device node
char model[32]; // Device model name
char serial[40]; // Device serial number (optional)
char bus_info[32]; // Unique and stable device location identifier
u32 hw_revision; // Hardware device revision
u32 driver_version; // Device driver version
u32 entity_id; // ID of the next entity to be registered
struct list_head entities; // List of registered entities
/* Protects the entities list */
spinlock_t lock; // Entities list lock
/* Serializes graph operations. */
struct mutex graph_mutex; // Entities graph operation lock
int (*link_notify)(struct media_link *link, u32 flags, unsigned int notification); // Link state change notification callback
};
还是从 dts 开始看,前面我们配置camera sensor时,节点为 compatible = "qcom,camera";
,
对应代码在\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c
在代码中,将 qcom,camera
注册在平台驱动中,并注册对应的sensor i2c 驱动。
@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c
static const struct of_device_id msm_sensor_driver_dt_match[] = {
{.compatible = "qcom,camera"},
{}
};
MODULE_DEVICE_TABLE(of, msm_sensor_driver_dt_match);
static struct platform_driver msm_sensor_platform_driver = {
.probe = msm_sensor_driver_platform_probe,
.driver = {
.name = "qcom,camera",
.owner = THIS_MODULE,
.of_match_table = msm_sensor_driver_dt_match,
},
.remove = msm_sensor_platform_remove,
};
static struct i2c_driver msm_sensor_driver_i2c = {
.id_table = i2c_id,
.probe = msm_sensor_driver_i2c_probe,
.remove = msm_sensor_driver_i2c_remove,
.driver = {
.name = SENSOR_DRIVER_I2C,
},
};
static int __init msm_sensor_driver_init(void)
{
rc = platform_driver_register(&msm_sensor_platform_driver);
rc = i2c_add_driver(&msm_sensor_driver_i2c);
return rc;
}
在 msm_sensor_driver_platform_probe
函数中,其主要工作如下:
msm_sensor_ctrl_t
结构体内存。
将sensor device type
初始化为 MSM_CAMERA_PLATFORM_DEVICE
解析 节点为 compatible = "qcom,camera";
的 dts 内容
解析dts 中配置的camera clk 信息clock-names = "cam_src_clk", "cam_clk";
qcom,clock-rates = ;
@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c
static int32_t msm_sensor_driver_platform_probe(struct platform_device *pdev)
{
int32_t rc = 0;
struct msm_sensor_ctrl_t *s_ctrl = NULL;
// 1. 创建并分配 msm_sensor_ctrl_t 结构体内存。
/* Create sensor control structure */
s_ctrl = kzalloc(sizeof(*s_ctrl), GFP_KERNEL);
platform_set_drvdata(pdev, s_ctrl);
// 2. 将sensor device type 初始化为 MSM_CAMERA_PLATFORM_DEVICE
/* Initialize sensor device type */
s_ctrl->sensor_device_type = MSM_CAMERA_PLATFORM_DEVICE;
s_ctrl->of_node = pdev->dev.of_node;
/*fill in platform device*/
s_ctrl->pdev = pdev;
// 3. 解析 节点为 compatible = "qcom,camera"; 的 dts 内容
rc = msm_sensor_driver_parse(s_ctrl);
==========================>
| static int32_t msm_sensor_driver_parse(struct msm_sensor_ctrl_t *s_ctrl)
| {
| /* Allocate memory for sensor_i2c_client */
| s_ctrl->sensor_i2c_client = kzalloc(sizeof(*s_ctrl->sensor_i2c_client), GFP_KERNEL);
|
| /* Parse dt information and store in sensor control structure */
| rc = msm_sensor_driver_get_dt_data(s_ctrl); // 解析Camera DTS 节点,详见 Chapter 3.2
|
| /* Initilize v4l2 subdev info */
| s_ctrl->sensor_v4l2_subdev_info = msm_sensor_driver_subdev_info;
| s_ctrl->sensor_v4l2_subdev_info_size = ARRAY_SIZE(msm_sensor_driver_subdev_info);
|
| /* Initialize default parameters */
| rc = msm_sensor_init_default_params(s_ctrl); // 初始化默认参数
|
| // 将 sensor ctrl 节构体保存在 g_sctrl 数组中。
| /* Store sensor control structure in static database */
| g_sctrl[s_ctrl->id] = s_ctrl;
| CDBG("g_sctrl[%d] %pK", s_ctrl->id, g_sctrl[s_ctrl->id]);
| return rc;
| }
<==========================
// 4. 解析dts 中配置的camera clk 信息
// 解析 clock-names = "cam_src_clk", "cam_clk";
// 解析 qcom,clock-rates = ;
/* Get clocks information */
rc = msm_camera_get_clk_info(s_ctrl->pdev, &s_ctrl->sensordata->power_info.clk_info,
&s_ctrl->sensordata->power_info.clk_ptr, &s_ctrl->sensordata->power_info.clk_info_size);
===========================>
| // @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\common\cam_soc_api.c
| rc = msm_camera_get_clk_info_internal(&pdev->dev, clk_info, clk_ptr, num_clk);
id = s_ctrl->id;
/* Fill device in power info */
s_ctrl->sensordata->power_info.dev = &pdev->dev;
return rc;
}
在该函数中主要是对dts 中配置的camera 节点解析,工作如下:
初始化msm_camera_sensor_board_info
结构体并分配对应的内存
解析 cell-index =
,以此为camera 数组计数 id
检测 camera id 是否大于系统最大支持数量
判断 msm_sensor_ctrl 全局数组中当前id 是否已经初始化
解析Camera 外设信息,包括 "qcom,actuator-src"、"qcom,ois-src"、"qcom,eeprom-src"、"qcom,led-flash-src"、"qcom,csiphy-sd-index"
解析Camera 电压配置,qcom,cam-vreg-name = "cam_vio", "cam_vana", "cam_vdig", "cam_vaf";
解析Camera GPIO配置"qcom,gpio-req-tbl-num"、"qcom,gpio-req-tbl-flags"、"qcom,gpio-req-tbl-label"
"qcom,gpio-vana"、"qcom,gpio-vio"、"qcom,gpio-vaf"、"qcom,gpio-vdig"、"qcom,gpio-reset"、"qcom,gpio-standby"、"qcom,gpio-flash-en"
解析I2C master ,"qcom,cci-master = ;"
解析摄像头旋转角度"qcom,mount-angle"
,如果没有配置默认设置为0
解析sensor 前后摄"qcom,sensor-position"
解析"qcom,sensor-mode"
@ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c
static int32_t msm_sensor_driver_get_dt_data(struct msm_sensor_ctrl_t *s_ctrl)
{
int32_t rc = 0, i = 0;
struct msm_camera_sensor_board_info *sensordata = NULL;
struct device_node *of_node = s_ctrl->of_node;
uint32_t cell_id;
// 1. 初始化 msm_camera_sensor_board_info 结构体并分配对应的内存
s_ctrl->sensordata = kzalloc(sizeof(*sensordata), GFP_KERNEL);
sensordata = s_ctrl->sensordata;
// 2. 解析 cell-index = ,以此为camera 数组计数 id
/** Read cell index - this cell index will be the camera slot where this camera will be mounted */
rc = of_property_read_u32(of_node, "cell-index", &cell_id);
s_ctrl->id = cell_id;
// 3. 检测camera id是否大于系统最大支持数量
if (cell_id >= MAX_CAMERAS) {
pr_err("failed: invalid cell_id %d", cell_id);
rc = -EINVAL;
goto FREE_SENSOR_DATA;
}
// 4. 判断全msm_sensor_ctrl 全局数组中当前id 是否已经初始化
/* Check whether g_sctrl is already filled for this cell_id */
if (g_sctrl[cell_id]) {
pr_err("failed: sctrl already filled for cell_id %d", cell_id);
rc = -EINVAL;
goto FREE_SENSOR_DATA;
}
// 5. 解析Camera 外设信息,包括 "qcom,actuator-src"、"qcom,ois-src"、"qcom,eeprom-src"、
// "qcom,led-flash-src"、"qcom,csiphy-sd-index"
/* Read subdev info */
rc = msm_sensor_get_sub_module_index(of_node, &sensordata->sensor_info);
==================>
+ //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c
+ int msm_sensor_get_sub_module_index(struct device_node *of_node, struct msm_sensor_info_t **s_info)
+ {
+ struct msm_sensor_info_t *sensor_info;
+ sensor_info = kzalloc(sizeof(*sensor_info), GFP_KERNEL);
+
+ for (i = 0; i subdev_id[i] = -1; /* Subdev expose additional interface for same sub module*/
+ sensor_info->subdev_intf[i] = -1;
+ }
+ src_node = of_parse_phandle(of_node, "qcom,actuator-src", 0);
+ sensor_info->subdev_id[SUB_MODULE_ACTUATOR] = val;
+
+ src_node = of_parse_phandle(of_node, "qcom,ois-src", 0);
+ sensor_info->subdev_id[SUB_MODULE_OIS] = val;
+
+ src_node = of_parse_phandle(of_node, "qcom,eeprom-src", 0);
+ sensor_info->subdev_id[SUB_MODULE_EEPROM] = val;
+
+ src_node = of_parse_phandle(of_node, "qcom,led-flash-src", 0);
+ sensor_info->subdev_id[SUB_MODULE_LED_FLASH] = val;
+
+ if (of_get_property(of_node, "qcom,csiphy-sd-index", &count)) {
+ count /= sizeof(uint32_t);
+ val_array = kzalloc(sizeof(uint32_t) * count, GFP_KERNEL);
+ rc = of_property_read_u32_array(of_node, "qcom,csiphy-sd-index", val_array, count);
+ for (i = 0; i subdev_id[SUB_MODULE_CSIPHY + i] = val_array[i];
+ CDBG("%s csiphy_core[%d] = %d\n", __func__, i, val_array[i]);
+ }
+ //.... 省略一部分解析代码
power_info.cam_vreg, &sensordata->power_info.num_vreg);
==================>
+ //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c
+ int msm_camera_get_dt_vreg_data(struct device_node *of_node, struct camera_vreg_t **cam_vreg, int *num_vreg)
+ {
+ count = of_property_count_strings(of_node, "qcom,cam-vreg-name");
+ CDBG("%s qcom,cam-vreg-name count %d\n", __func__, count);
+ vreg = kzalloc(sizeof(*vreg) * count, GFP_KERNEL);
+ *cam_vreg = vreg;
+ *num_vreg = count;
+ for (i = 0; i < count; i++) {
+ rc = of_property_read_string_index(of_node, "qcom,cam-vreg-name", i, &vreg[i].reg_name);
+ CDBG("%s reg_name[%d] = %s\n", __func__, i,vreg[i].reg_name);
+ }
+ //.... 省略一部分解析代码
+ }
power_info.gpio_conf), of_node);
==================>
+ //@\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\io\msm_camera_dt_util.c
+ int32_t msm_sensor_driver_get_gpio_data(struct msm_camera_gpio_conf **gpio_conf, struct device_node *of_node)
+ {
+ uint16_t *gpio_array = NULL;
+ struct msm_camera_gpio_conf *gconf = NULL;
+ gpio_array_size = of_gpio_count(of_node);
+ gconf = kzalloc(sizeof(struct msm_camera_gpio_conf),
+ *gpio_conf = gconf;
+
+ // 解析 "qcom,gpio-req-tbl-num"、"qcom,gpio-req-tbl-flags"、"qcom,gpio-req-tbl-label"
+ rc = msm_camera_get_dt_gpio_req_tbl(of_node, gconf, gpio_array, gpio_array_size);
+ ============>
+ + of_get_property(of_node, "qcom,gpio-req-tbl-num", &count)
+ + rc = of_property_read_u32_array(of_node, "qcom,gpio-req-tbl-num", val_array, count);
+ + rc = of_property_read_u32_array(of_node, "qcom,gpio-req-tbl-flags", val_array, count);
+ + for (i = 0; i cam_gpio_req_tbl[i].label);
+ + CDBG("%s cam_gpio_req_tbl[%d].label = %s\n", __func__, i,gconf->cam_gpio_req_tbl[i].label);
+ + }
+
+ rc = of_property_read_u32(of_node, "qcom,gpio-vana", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VANA] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-vio", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VIO] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-vaf", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VAF] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-vdig", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_VDIG] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-reset", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_RESET] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-standby", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_STANDBY] =gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-af-pwdm", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_AF_PWDM] = gpio_array[val];
+ rc = of_property_read_u32(of_node, "qcom,gpio-flash-en", &val);
+ gconf->gpio_num_info->gpio_num[SENSOR_GPIO_FL_EN] = gpio_array[val];
+ //.... 省略一部分解析代码
+ <===========
+ }
<==================
// 8. 解析I2C master ,"qcom,cci-master = ;"
/* Get CCI master */
rc = of_property_read_u32(of_node, "qcom,cci-master", &s_ctrl->cci_i2c_master);
CDBG("qcom,cci-master %d, rc %d", s_ctrl->cci_i2c_master, rc);
// 9. 解析摄像头旋转角度"qcom,mount-angle",如果没有配置默认设置为0
/* Get mount angle */
if (0 > of_property_read_u32(of_node, "qcom,mount-angle", &sensordata->sensor_info->sensor_mount_angle)) {
/* Invalidate mount angle flag */
sensordata->sensor_info->is_mount_angle_valid = 0;
sensordata->sensor_info->sensor_mount_angle = 0;
} else {
sensordata->sensor_info->is_mount_angle_valid = 1;
}
CDBG("%s qcom,mount-angle %d\n", __func__,sensordata->sensor_info->sensor_mount_angle);
// 10. 解析sensor 前后摄"qcom,sensor-position"
if (0 > of_property_read_u32(of_node, "qcom,sensor-position",&sensordata->sensor_info->position)) {
CDBG("%s:%d Invalid sensor position\n", __func__, __LINE__);
sensordata->sensor_info->position = INVALID_CAMERA_B;
}
// 11. 解析sensor-mode
if (0 > of_property_read_u32(of_node, "qcom,sensor-mode",
&sensordata->sensor_info->modes_supported)) {
CDBG("%s:%d Invalid sensor mode supported\n", __func__, __LINE__);
sensordata->sensor_info->modes_supported = CAMERA_MODE_INVALID;
}
/* Get vdd-cx regulator */
/*Optional property, don't return error if absent */
of_property_read_string(of_node, "qcom,vdd-cx-name",&sensordata->misc_regulator);
CDBG("qcom,misc_regulator %s", sensordata->misc_regulator);
s_ctrl->set_mclk_23880000 = of_property_read_bool(of_node,"qcom,mclk-23880000");
CDBG("%s qcom,mclk-23880000 = %d\n", __func__,s_ctrl->set_mclk_23880000);
return rc;
}
在msm_camera_sensor_board_info 中保存了所有camera 及硬件相关的name及参数。
//@ \kernel\msm-4.4\include\soc\qcom\camera2.h
struct msm_camera_sensor_board_info {
const char *sensor_name; // camera sensor name
const char *eeprom_name; // eeprom name
const char *actuator_name; // actuator name
const char *ois_name; // ois name
const char *flash_name; // flashlight name
const char *special_support_sensors[MAX_SPECIAL_SUPPORT_SIZE];
int32_t special_support_size;
struct msm_camera_slave_info *slave_info; // i2c addr
struct msm_camera_csi_lane_params *csi_lane_params;
struct msm_camera_sensor_strobe_flash_data *strobe_flash_data;
struct msm_actuator_info *actuator_info;
struct msm_sensor_info_t *sensor_info;
const char *misc_regulator;
struct msm_camera_power_ctrl_t power_info;
struct msm_camera_sensor_slave_info *cam_slave_info;
};
3.2.2 Camera 支持的外设类型 sensor_sub_module_t
@ \kernel\msm-4.4\include\uapi\media\msm_cam_sensor.h
enum sensor_sub_module_t {
SUB_MODULE_SENSOR,
SUB_MODULE_CHROMATIX,
SUB_MODULE_ACTUATOR,
SUB_MODULE_EEPROM,
SUB_MODULE_LED_FLASH,
SUB_MODULE_STROBE_FLASH,
SUB_MODULE_CSID,
SUB_MODULE_CSID_3D,
SUB_MODULE_CSIPHY,
SUB_MODULE_CSIPHY_3D,
SUB_MODULE_OIS,
SUB_MODULE_EXT,
SUB_MODULE_IR_LED,
SUB_MODULE_IR_CUT,
SUB_MODULE_MAX,
};
g_sctrl 是静态全局的一个msm_sensor_ctrl_t * 结构体指针数组,其定义如下:
/* Static declaration */
static struct msm_sensor_ctrl_t *g_sctrl[MAX_CAMERAS];
前面我们在配置dts 时也发现了,通常我们要配置的camera数量是大于1的,前面代码中,我们配置了3个Camera,两个后摄,一个前摄。而这三个camera dts 中的节点都是一样的"qcom,camera"
。
可以看出,驱动和设备会匹配三次,换句话说,也就是 msm_sensor_driver_platform_probe()
函数会走三次,每次传递的dts节点内容是不一样的,三个camera都会依次probe 一次,
从而,当probe 完毕后,会保存三个struct msm_sensor_ctrl_t *
结构体的数据保存在全局 g_sctrl 中。
至此,我们代码中,就把dts 的内容成功的转化为了msm_sensor_ctrl_t
结构体保存在 全局 g_sctrl 中。
本章3.1 中我们分析过了 平台驱动probe函数 msm_sensor_driver_platform_probe()
,这个函数主要作用还是解析DTS,但并不会真正probe camera sensor。
那问题来了,camera sensor probe 是在什么时候呢?
其实,camera probe 并不是和其他kernerl 驱动一样,在初始化时就probe,而是通过hal 层下发 probe 指令来控制probe 的。
3.4.1 hal层函数 module_sensor_init()hal层代码位于 \vendor\qcom\proprietary\mm-camera\mm-camera2\media-controller\modules\sensors\module\module_sensor.c
//@\vendor\qcom\proprietary\mm-camera\mm-camera2\media-controller\modules\sensors\module\module_sensor.c
mct_module_t *module_sensor_init(const char *name)
{
......
/* module_sensor_probe_sensors */
ret = sensor_init_probe(module_ctrl);
/* find all the actuator, etc with sensor */
ret = module_sensor_find_other_subdev(module_ctrl);
/* Init sensor modules */
ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensors_subinit,NULL);
/* intiialize the eeprom */
ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensor_init_eeprom,module_ctrl->eebin_hdl);
/* Create chromatix manager */
ret = mct_list_traverse(module_ctrl->sensor_bundle, module_sensor_init_chromatix, module_ctrl->eebin_hdl);
/* Initialize dual cam stream mutex */
pthread_mutex_init(&module_ctrl->dual_cam_mutex, NULL);
}
上层代码逻辑我们后续会详细分析,并不是我们本章的重点,我们重点关注sensor_init_probe()
,其内容如下:
在 sensor_init_eebin_probe()
中,我们可以看出,知道camera 数量后,在for循环中,依次调用 sensor_probe()
函数初始化每个camera,我们当前代码中有三个camera,这面就会调用三次sensor_probe()
。
至于 hal 层中又是如何知道我们是三个camera的,后续我们分析到hal 层再说吧。
/** sensor_init_probe: probe available sensors
*
* @module_ctrl: sensor ctrl pointer
*
* Return: 0 for success and negative error on failure
*
* 1) Find sensor_init subdev and it
* 2) Open EEPROM subdev and check whether any sensor library
* is present in EEPROM
* 3) Open sensor libraries present in dumped firware location
* 4) Check library version of EEPROM and dumped firmware
* 5) Load latest of both
* 6) Pass slave information, power up and probe sensors
* 7) If probe succeeds, create video node and sensor subdev
* 8) Repeat step 2-8 for all sensor libraries present in
* EEPROM
* 9) Repeat step 6-8 for all sensor libraries present in
* absolute path
**/
boolean sensor_init_probe(module_sensor_ctrl_t *module_ctrl)
{
......
ret = sensor_init_eebin_probe(module_ctrl, sd_fd);
......
}
static boolean sensor_init_eebin_probe(module_sensor_ctrl_t *module_ctrl,int32_t sd_fd)
{
SLOW("Enter");
bin_ctl.cmd = EEPROM_BIN_GET_NUM_DEV;
bin_ctl.ctl.q_num.type = EEPROM_BIN_LIB_SENSOR;
bin_ctl.ctl.q_num.num_devs = 0;
eebin_interface_control(module_ctrl->eebin_hdl, &bin_ctl);
num_devs = bin_ctl.ctl.q_num.num_devs;
SLOW("num_devs:%d", num_devs);
for (i = 0; i eebin_hdl, &bin_ctl);
if (rc < 0)
continue;
ret = sensor_probe(module_ctrl,
sd_fd,
bin_ctl.ctl.dev_data.name,
bin_ctl.ctl.dev_data.path,
NULL,
FALSE,
FALSE);
if (ret == FALSE) {
SINFO("failed: to load %s", bin_ctl.ctl.dev_data.name);
}
}
SLOW("Exit");
return TRUE;
}
进入 sensor_probe()
函数:
在函数中可以看出,首先会调用 sensor_load_library()
加载vendor 中camera sensor 的库文件。
接着通过 IOCTRL 向通过下发 CFG_SINIT_PROBE
消息,通知驱动层作probe 初始化。
/** sensor_probe: probe available sensors
* @fd: sensor_init fd
* @sensor_name: sensor name
* Return: TRUE for success and FALSE for failure
* 1) Open sensor library
* 2) Pass slave information, probe sensor
* 3) If probe succeeds, create video node and sensor subdev is
* created in kernel
**/
static boolean sensor_probe(module_sensor_ctrl_t *module_ctrl, int32_t fd, const char *sensor_name, char *path, struct xmlCameraConfigInfo *xmlConfig, boolean is_stereo_config, boolean bypass_video_node_creation)
{
/* Load sensor library */
rc = sensor_load_library(sensor_name, sensor_lib_params, path);
......
/* Pass slave information to kernel and probe */
memset(&cfg, 0, sizeof(cfg));
cfg.cfgtype = CFG_SINIT_PROBE;
cfg.cfg.setting = slave_info;
if (ioctl(fd, VIDIOC_MSM_SENSOR_INIT_CFG, &cfg) < 0) {
SINFO("[%s]CFG_SINIT_PROBE failed",sensor_name);
ret = FALSE;
goto ERROR;
}
if (cfg.probed_info.session_id == 0 && FALSE == bypass_video_node_creation) {
SINFO("[%s] probe failed.", sensor_name);
ret = FALSE;
goto ERROR;
}
SHIGH("[%s] probe succeeded: session_id(%d) entity_name(%s)",sensor_name, cfg.probed_info.session_id, cfg.entity_name);
......
}
IOCTRL 命令定义如下:
/* sensor init structures and enums */
enum msm_sensor_init_cfg_type_t {
CFG_SINIT_PROBE,
CFG_SINIT_PROBE_DONE,
CFG_SINIT_PROBE_WAIT_DONE,
};
上层IOCTRL 命令下发到kernerl 中,进入msm_sensor_init_subdev_ioctl()
中,接着转发到msm_sensor_driver_cmd()
中,调用 msm_sensor_driver_probe()
函数
// @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_init.c
static long msm_sensor_init_subdev_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
switch (cmd) {
case VIDIOC_MSM_SENSOR_INIT_CFG:
rc = msm_sensor_driver_cmd(s_init, arg);
break;
}
}
/* Static function definition */
static int32_t msm_sensor_driver_cmd(struct msm_sensor_init_t *s_init, void *arg)
{
switch (cfg->cfgtype) {
case CFG_SINIT_PROBE:
mutex_lock(&s_init->imutex);
s_init->module_init_status = 0;
rc = msm_sensor_driver_probe(cfg->cfg.setting,
&cfg->probed_info,
cfg->entity_name);
mutex_unlock(&s_init->imutex);
if (rc module_init_status = 1;
wake_up(&s_init->state_wait);
break;
case CFG_SINIT_PROBE_WAIT_DONE:
msm_sensor_wait_for_probe_done(s_init);
break;
return rc;
}
从上层开始下发probe 命令,至此正式开始probe 初始化 camera,代码如下:
初始化并分配 slave_info 内存 将上层下发的 slave_info保存在 slave_info32 中 将 slave_info32 中的信息保存到 slave_info中。 打印 slave info 信息 通过camera id 获取到对应的 camera sensor ctrol 信息,也就是对应的camera 的dts 信息。 检测sensor 是否已经probe 过了,如果不是,直接跳过if 进行probe 获取camera的power settting 初始化 msm_camera_slave_info 结构体变量 camera_info ,用于保存 camera 的信息 配置camera i2c 相关信息 往s_ctrl 中填充 上下电相关信息 解析该camera 中所有外设 dts 节点信息"qcom,eeprom-src"、"qcom,actuator-src"、"qcom,led-flash-src"
调用 sensor_power_up()
给sensor 上电,开始probe sensor ,上电时调用 msm_sensor_check_id()
,然后调用msm_sensor_match_id()
检测 sensor id 是否区配。
创建对应的 /dev/videox 节点 及 /dev/mediax 的节点
probe 成功后下电
更新s_ctrl 结构体信息
// @ kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor_driver.c
int32_t msm_sensor_driver_probe(void *setting, struct msm_sensor_info_t *probed_info, char *entity_name)
{
struct msm_sensor_ctrl_t *s_ctrl = NULL;
struct msm_camera_cci_client *cci_client = NULL;
struct msm_camera_sensor_slave_info *slave_info = NULL;
struct msm_camera_slave_info *camera_info = NULL;
// 1. 初始化并分配 slave_info 内存
/* Allocate memory for slave info */
slave_info = kzalloc(sizeof(*slave_info), GFP_KERNEL);
if (is_compat_task()) {
// 2. 将上层下发的 slave_info保存在 slave_info32 中
struct msm_camera_sensor_slave_info32 *slave_info32 =kzalloc(sizeof(*slave_info32), GFP_KERNEL);
copy_from_user((void *)slave_info32, setting, sizeof(*slave_info32));
// 3. 将 slave_info32 中的信息保存到 slave_info中。
strlcpy(slave_info->actuator_name, slave_info32->actuator_name, sizeof(slave_info->actuator_name));
strlcpy(slave_info->eeprom_name, slave_info32->eeprom_name, sizeof(slave_info->eeprom_name));
strlcpy(slave_info->sensor_name, slave_info32->sensor_name, sizeof(slave_info->sensor_name));
strlcpy(slave_info->ois_name, slave_info32->ois_name, sizeof(slave_info->ois_name));
strlcpy(slave_info->flash_name, slave_info32->flash_name, sizeof(slave_info->flash_name));
slave_info->addr_type = slave_info32->addr_type;
slave_info->camera_id = slave_info32->camera_id;
slave_info->i2c_freq_mode = slave_info32->i2c_freq_mode;
slave_info->sensor_id_info = slave_info32->sensor_id_info;
slave_info->slave_addr = slave_info32->slave_addr;
slave_info->module_id_info = slave_info32->module_id_info;
slave_info->power_setting_array.size = slave_info32->power_setting_array.size;
slave_info->power_setting_array.size_down = slave_info32->power_setting_array.size_down;
slave_info->power_setting_array.size_down = slave_info32->power_setting_array.size_down;
slave_info->power_setting_array.power_setting = compat_ptr(slave_info32->power_setting_array.power_setting);
slave_info->power_setting_array.power_down_setting = compat_ptr(slave_info32->power_setting_array.power_down_setting);
slave_info->sensor_init_params = slave_info32->sensor_init_params;
slave_info->output_format =slave_ info32->output_format;
kfree(slave_info32); // 保存完毕合释放 slave_info32 内存。
} else
#endif
{
if (copy_from_user(slave_info,(void *)setting, sizeof(*slave_info))) {
pr_err("failed: copy_from_user");
rc = -EFAULT;
goto free_slave_info;
}
}
// 4. 打印 slave info 信息
/* Print slave info */
CDBG("camera id %d Slave addr 0x%X addr_type %d\n", slave_info->camera_id, slave_info->slave_addr, slave_info->addr_type);
CDBG("sensor_id_reg_addr 0x%X sensor_id 0x%X sensor id mask %d", slave_info->sensor_id_info.sensor_id_reg_addr, slave_info->sensor_id_info.sensor_id,slave_info->sensor_id_info.sensor_id_mask);
CDBG("power up size %d power down size %d\n",slave_info->power_setting_array.size,slave_info->power_setting_array.size_down);
CDBG("position %d",slave_info->sensor_init_params.position);
CDBG("mount %d",slave_info->sensor_init_params.sensor_mount_angle);
// 5. 通过camera id 获取到对应的 camera sensor ctrol 信息,也就是对应的camera 的dts 信息。
/* Extract s_ctrl from camera id */
s_ctrl = g_sctrl[slave_info->camera_id];
CDBG("s_ctrl[%d] %pK", slave_info->camera_id, s_ctrl);
// 6. 检测sensor 是否已经probe 过了,如果不是,直接跳过if 进行probe
if (s_ctrl->is_probe_succeed == 1) {
/*
* Different sensor on this camera slot has been connected
* and probe already succeeded for that sensor. Ignore this
* probe */
......
}
// 7. 获取camera的power settting
rc = msm_sensor_get_power_settings(setting, slave_info,&s_ctrl->sensordata->power_info);
// 8. 初始化 msm_camera_slave_info 结构体变量 camera_info ,用于保存 camera 的信息
camera_info = kzalloc(sizeof(struct msm_camera_slave_info), GFP_KERNEL);
s_ctrl->sensordata->slave_info = camera_info;
/* Fill sensor slave info */
camera_info->sensor_slave_addr = slave_info->slave_addr;
camera_info->eeprom_slave_addr = slave_info->module_id_info.module_slave_id;
camera_info->eeprom_module_reg_addr = slave_info->module_id_info.module_id_reg_addr;
camera_info->eeprom_module_id = slave_info->module_id_info.module_id;
camera_info->eeprom_master_id = slave_info->module_id_info.master_id;
camera_info->sensor_id_reg_addr =slave_info->sensor_id_info.sensor_id_reg_addr;
camera_info->sensor_id = slave_info->sensor_id_info.sensor_id;
camera_info->sensor_id_mask = slave_info->sensor_id_info.sensor_id_mask;
s_ctrl->sensor_i2c_client->addr_type = slave_info->addr_type;
if (s_ctrl->sensor_i2c_client->client)
s_ctrl->sensor_i2c_client->client->addr =camera_info->sensor_slave_addr;
// 9. 配置camera i2c 相关信息。
cci_client = s_ctrl->sensor_i2c_client->cci_client;
cci_client->cci_i2c_master = s_ctrl->cci_i2c_master;
cci_client->sid = slave_info->slave_addr >> 1;
cci_client->retries = 3;
cci_client->id_map = 0;
cci_client->i2c_freq_mode = slave_info->i2c_freq_mode;
// 10. 往s_ctrl 中填充 上下电相关信息
/* Parse and fill vreg params for powerup settings */
rc = msm_camera_fill_vreg_params(
s_ctrl->sensordata->power_info.cam_vreg,
s_ctrl->sensordata->power_info.num_vreg,
s_ctrl->sensordata->power_info.power_setting,
s_ctrl->sensordata->power_info.power_setting_size);
/* Parse and fill vreg params for powerdown settings*/
rc = msm_camera_fill_vreg_params(
s_ctrl->sensordata->power_info.cam_vreg,
s_ctrl->sensordata->power_info.num_vreg,
s_ctrl->sensordata->power_info.power_down_setting,
s_ctrl->sensordata->power_info.power_down_setting_size);
CSID_TG:
/* Update sensor, actuator and eeprom name in
* sensor control structure */
s_ctrl->sensordata->sensor_name = slave_info->sensor_name;
s_ctrl->sensordata->eeprom_name = slave_info->eeprom_name;
s_ctrl->sensordata->actuator_name = slave_info->actuator_name;
s_ctrl->sensordata->ois_name = slave_info->ois_name;
s_ctrl->sensordata->flash_name = slave_info->flash_name;
/*
* Update eeporm subdevice Id by input eeprom name
*/
// 11. 解析该camera 中所有外设节点信息 "qcom,eeprom-src"、"qcom,actuator-src"、"qcom,led-flash-src"
rc = msm_sensor_fill_eeprom_subdevid_by_name(s_ctrl);
=====> src_node = of_parse_phandle(of_node, "qcom,eeprom-src", i);
/*
* Update actuator subdevice Id by input actuator name
*/
rc = msm_sensor_fill_actuator_subdevid_by_name(s_ctrl);
=====> src_node = of_parse_phandle(of_node, "qcom,actuator-src", 0);
rc = msm_sensor_fill_ois_subdevid_by_name(s_ctrl);
rc = msm_sensor_fill_flash_subdevid_by_name(s_ctrl);
=====> src_node = of_parse_phandle(of_node, "qcom,led-flash-src", 0);
// 12. 调用 sensor_power_up() 给sensor 上电,开始probe sensor ,上电时调用 msm_sensor_check_id(),然后调用msm_sensor_match_id()检测sensor id 是否区配。
/* Power up and probe sensor */
rc = s_ctrl->func_tbl->sensor_power_up(s_ctrl);
==================>
@ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor.c
for (retry = 0; retry sensor_i2c_client->i2c_func_tbl =&msm_sensor_secure_func_tbl;
rc = msm_camera_power_up(power_info, s_ctrl->sensor_device_type, sensor_i2c_client);
rc = msm_sensor_check_id(s_ctrl);
========>
rc = msm_sensor_match_id(s_ctrl);
<=======
if (rc sensor_device_type, sensor_i2c_client);
msleep(20);
continue;
} else {
break;
}
}
sensor_name);
/*
* Create /dev/videoX node, comment for now until dummy /dev/videoX
* node is created and used by HAL
*/
if (s_ctrl->sensor_device_type == MSM_CAMERA_PLATFORM_DEVICE)
rc = msm_sensor_driver_create_v4l_subdev(s_ctrl);
// 14. probe 成功后下电
/* Power down */
s_ctrl->func_tbl->sensor_power_down(s_ctrl);
rc = msm_sensor_fill_slave_info_init_params(slave_info,s_ctrl->sensordata->sensor_info);
rc = msm_sensor_validate_slave_info(s_ctrl->sensordata->sensor_info);
/* Update sensor mount angle and position in media entity flag */
is_yuv = (slave_info->output_format == MSM_SENSOR_YCBCR) ? 1 : 0;
mount_pos = ((s_ctrl->is_secure & 0x1) << 26) | is_yuv <sensordata->sensor_info->position <sensordata->
sensor_info->sensor_mount_angle / 90) <msm_sd.sd.entity.flags = mount_pos | MEDIA_ENT_FL_DEFAULT;
/*Save sensor info*/
s_ctrl->sensordata->cam_slave_info = slave_info;
// 15. 更新s_ctrl 结构体信息
msm_sensor_fill_sensor_info(s_ctrl, probed_info, entity_name);
/*
* Set probe succeeded flag to 1 so that no other camera shall
* probed on this slot
*/
s_ctrl->is_probe_succeed = 1;
return rc;
}
@ \kernel\msm-4.4\drivers\media\platform\msm\camera_v2\camera\camera.c
static int32_t msm_sensor_driver_create_v4l_subdev(struct msm_sensor_ctrl_t *s_ctrl)
{
int32_t rc = 0;
uint32_t session_id = 0;
// 1. 初始化 msm_video_device 结构体,调用video_register_device() 注册video 节点
rc = camera_init_v4l2(&s_ctrl->pdev->dev, &session_id);
===============>
pvdev = kzalloc(sizeof(struct msm_video_device),GFP_KERNEL);
pvdev->vdev = video_device_alloc();
v4l2_dev = kzalloc(sizeof(struct v4l2_device), GFP_KERNEL);
rc = v4l2_device_register(dev, pvdev->vdev->v4l2_dev);
strlcpy(pvdev->vdev->name, "msm-sensor", sizeof(pvdev->vdev->name));
pvdev->vdev->release = video_device_release;
pvdev->vdev->fops = &camera_v4l2_fops;
pvdev->vdev->ioctl_ops = &camera_v4l2_ioctl_ops;
pvdev->vdev->minor = -1;
pvdev->vdev->vfl_type = VFL_TYPE_GRABBER;
rc = video_register_device(pvdev->vdev,VFL_TYPE_GRABBER, -1);
*session = pvdev->vdev->num;
video_set_drvdata(pvdev->vdev, pvdev);
sensordata->sensor_info->session_id = session_id;
/* Create /dev/v4l-subdevX device */
v4l2_subdev_init(&s_ctrl->msm_sd.sd, s_ctrl->sensor_v4l2_subdev_ops);
snprintf(s_ctrl->msm_sd.sd.name, sizeof(s_ctrl->msm_sd.sd.name), "%s",s_ctrl->sensordata->sensor_name);
v4l2_set_subdevdata(&s_ctrl->msm_sd.sd, s_ctrl->pdev);
s_ctrl->msm_sd.sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
media_entity_init(&s_ctrl->msm_sd.sd.entity, 0, NULL, 0);
s_ctrl->msm_sd.sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV;
s_ctrl->msm_sd.sd.entity.group_id = MSM_CAMERA_SUBDEV_SENSOR;
s_ctrl->msm_sd.sd.entity.name = s_ctrl->msm_sd.sd.name;
s_ctrl->msm_sd.close_seq = MSM_SD_CLOSE_2ND_CATEGORY | 0x3;
rc = msm_sd_register(&s_ctrl->msm_sd);
if (rc msm_sd.sd.devnode->fops =&msm_sensor_v4l2_subdev_fops;
return rc;
}
// @\kernel\msm-4.4\drivers\media\platform\msm\camera_v2\sensor\msm_sensor.h
struct msm_sensor_ctrl_t {
struct platform_device *pdev;
struct mutex *msm_sensor_mutex;
enum msm_camera_device_type_t sensor_device_type;
struct msm_camera_sensor_board_info *sensordata;
struct msm_sensor_power_setting_array power_setting_array;
struct msm_sensor_packed_cfg_t *cfg_override;
struct msm_sd_subdev msm_sd;
enum cci_i2c_master_t cci_i2c_master;
struct msm_camera_i2c_client *sensor_i2c_client;
struct v4l2_subdev_info *sensor_v4l2_subdev_info;
uint8_t sensor_v4l2_subdev_info_size;
struct v4l2_subdev_ops *sensor_v4l2_subdev_ops;
struct msm_sensor_fn_t *func_tbl;
struct msm_camera_i2c_reg_setting stop_setting;
void *misc_regulator;
enum msm_sensor_state_t sensor_state;
uint8_t is_probe_succeed;
uint32_t id;
struct device_node *of_node;
enum msm_camera_stream_type_t camera_stream_type;
uint32_t set_mclk_23880000;
uint8_t is_csid_tg_mode;
uint32_t is_secure;
};
通过前面的分析,我们再次验证了Kernel Camera 中的 camera及 Sensor 的两部份。
Camera 部分
通过解析compatible = "qcom,msm-cam";
来初始化并注册好media_device 、v4l2_device、video_device 设备,同时生成/dev/media0节点。
Sensor 部分
通过解析compatible = "qcom,camera";
来初始化调用probe解析camera sensor的dts节点信息,保存在全局g_sctrl 数组中。
然后,上层在初始化时,依次对每个sensor下发 ioctl 参数,触发其作初始化probe ,上电check_sensor_id 及 创建对应的 /dev/videoX 节点 及 /dev/mediaX 的节点
至此,给合我们之前的移植过程,我们就将Kernel 中的 dts 相关的部分通过代码流程分析清楚了。
接下来,我们来看下 LinuxKernel 中的 V4L2 机制。