初步认识
初值选取
小批
初步认识k-means翻译过来就是K均值聚类算法,其目的是将样本分割为k个簇,而这个k
则是KMeans
中最重要的参数:n_clusters
,默认为8。
下面做一个最简单的聚类
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
X, y = make_blobs(1500)
fig = plt.figure()
for i in range(2):
ax = fig.add_subplot(1,2,i+1)
y = KMeans(i+2).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y)
plt.show()
其中,y
是聚类结果,其数值表示对应位置X
所属类号。
效果如图所示,对于下面这组数据来说,显然最好是分为两类,但如果KMeans
的n_clusters
设为3,那就会聚成3类。
上面调用的KMeans
是一个类,sklearn
中同样提供了函数形式的调用,其使用方法如下
from sklearn.cluster import k_means
cen, y, interia = k_means(X, 3)
其中,cen
表示聚类后,每一类的质心;y
为聚类后的标签;interia
表示均方误差之和。
在KMeans
最重要的概念是簇,也就是被分割后的数据种类;而每个簇都有一个非常重要的点,就是质心。在设定好簇的个数之后,也就相当于确定了质心的个数,而KMeans
算法的基本流程是
选择k个点作为k个簇的初始质心
计算样本到这k个质心(簇)的距离,并将其划入距离最近的簇中
计算每个簇的均值,并使用该均值更新簇的质心
重复上述2-3的操作,直到质心区域稳定或者达到最大迭代次数。
从这个流程可以看出来,KMeans
算法至少有两个细节需要考虑,一个是初始化方案,另一个则是质心更新的方案。
在KMeans
类或者k_means
函数中,提供了两种初始化质心方案,通过参数init
来控制
'random'
:表示随机生成k个质心
'k-means++'
:此为默认值,通过kMeans++
方法来初始化质心。
kMeans++
初始化质心的流程如下
随机选择1个点作为初始质心 x 0
计算其他点到最近质心的距离
假定现有 n n n个质心了,那么选择距离当前质心较远的点作为下一个质心 x n x_n xn
重复步骤2和3,直到质心个数达到 k k k个。
若希望直接调用kMeans++
函数,则可使用kmeans_plusplus
。
sklearn
提供了KMeans
的一个变种MiniBatchKMeans
,可在每次训练迭代中随机抽样,这种小批量的训练过程大大减少了运算时间。
当样本量非常巨大时,小批KMeans的优势是非常明显的
from sklearn.cluster import MiniBatchKMeans
import time
ys, xs = np.indices([4,4])*6
cens = list(zip(xs.reshape(-1), ys.reshape(-1)))
X, y = make_blobs(100000,centers=cens)
km = KMeans(16)
mbk = MiniBatchKMeans(16)
def test(func, value):
t = time.time()
func(value)
print("耗时", time.time()-t)
test(km.fit_predict, X)
# 耗时 3.2028110027313232
test(mbk.fit_predict, X)
# 耗时 0.2590029239654541
可见效果非常明显,其中fit_predict
和predict
相似,但并没有返回值,km.fit_predict(X)
运行之后,会更改km
中的labels_
属性,此即分类结果
fig = plt.figure()
ax = fig.add_subplot(1,2,1)
ax.scatter(X[:,0], X[:,1], c=km.labels_,
marker='.', alpha=0.5)
ax = fig.add_subplot(1,2,2)
ax.scatter(X[:,0], X[:,1], c=mbk.labels_,
marker='.', alpha=0.5)
plt.show()
效果如图所示,可见小批的KMeans算法和KMeans算法从结果上来看区别不大。
到此这篇关于Python sklearn中的K-Means聚类使用方法浅析的文章就介绍到这了,更多相关Python K-Means聚类内容请搜索软件开发网以前的文章或继续浏览下面的相关文章希望大家以后多多支持软件开发网!