使用卷积神经网络对mnist数据集进行分析

Pandora ·
更新时间:2024-11-10
· 649 次阅读

使用卷积神经网络对mnist数据集进行分析
使用tensorflow对mnist数据集进行建模
#1、导入需要用到的包

import tensorflow as tf import random import numpy as np import matplotlib.pyplot as plt import datetime from tensorflow.examples.tutorials.mnist import input_data

#2、导入mnist数据集

mnist = input_data.read_data_sets("data/", one_hot=True)

#3、定义x和y,即输入x和标签y

tf.reset_default_graph() sess = tf.InteractiveSession() x = tf.placeholder("float", shape = [None, 28,28,1]) #输入是28x28、通道是1的图片 y_ = tf.placeholder("float", shape = [None, 10]) #输出是一个10维的向量,表示10个分类 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) #第一层的卷积,大小是5x5,数量是32个 b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #第一层的偏置,大小是32

#4、建立第一层卷积层

h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 #第一层卷积层的建立 h_conv1 = tf.nn.relu(h_conv1) #第一层卷积层的激活函数 h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #第一层卷积层上的池化 def conv2d(x, W): return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#5、建立第二层卷积层

W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(.1, shape = [64])) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2)

#6、第一个全连接层

W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(.1, shape = [1024])) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#7、Dropout层

keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#8、第二个全连接层

W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))

#9、全连接层

y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

#10、

【完整代码】

#1、导入需要用到的包 import tensorflow as tf import random import numpy as np import matplotlib.pyplot as plt import datetime from tensorflow.examples.tutorials.mnist import input_data #2、导入mnist数据集 mnist = input_data.read_data_sets("data/", one_hot=True) #3、定义x和y,即输入x和标签y tf.reset_default_graph() sess = tf.InteractiveSession() x = tf.placeholder("float", shape = [None, 28,28,1]) #输入是28x28、通道是1的图片 y_ = tf.placeholder("float", shape = [None, 10]) #输出是一个10维的向量,表示10个分类 W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1)) #第一层的卷积,大小是5x5,数量是32个 b_conv1 = tf.Variable(tf.constant(.1, shape = [32])) #第一层的偏置,大小是32 #4、建立第一层卷积层 h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1 #第一层卷积层的建立 h_conv1 = tf.nn.relu(h_conv1) #第一层卷积层的激活函数 h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #第一层卷积层上的池化 def conv2d(x, W): return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #5、建立第二层卷积层 W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1)) b_conv2 = tf.Variable(tf.constant(.1, shape = [64])) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #6、第一个全连接层 W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1)) b_fc1 = tf.Variable(tf.constant(.1, shape = [1024])) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #7、Dropout层 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #8、第二个全连接层 W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1)) b_fc2 = tf.Variable(tf.constant(.1, shape = [10])) #9、全连接层 y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2 crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y)) trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss) correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) sess.run(tf.global_variables_initializer()) batchSize = 50 for i in range(1000): batch = mnist.train.next_batch(batchSize) trainingInputs = batch[0].reshape([batchSize,28,28,1]) trainingLabels = batch[1] if i%100 == 0: trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0}) print ("step %d, training accuracy %g"%(i, trainAccuracy)) trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})
作者:洪士



mnist 卷积神经网络 神经网络 卷积

需要 登录 后方可回复, 如果你还没有账号请 注册新账号
相关文章