Python利用逻辑回归模型解决MNIST手写数字识别问题详解

Fronde ·
更新时间:2024-11-14
· 597 次阅读

本文实例讲述了Python利用逻辑回归模型解决MNIST手写数字识别问题。分享给大家供大家参考,具体如下:

1、MNIST手写识别问题

MNIST手写数字识别问题:输入黑白的手写阿拉伯数字,通过机器学习判断输入的是几。可以通过TensorFLow下载MNIST手写数据集,通过import引入MNIST数据集并进行读取,会自动从网上下载所需文件。

%matplotlib inline import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_data.read_data_sets('MNIST_data/',one_hot=True) import matplotlib.pyplot as plt def plot_image(image): #图片显示函数 plt.imshow(image.reshape(28,28),cmap='binary') plt.show() print("训练集数量:",mnist.train.num_examples, "特征值组成:",mnist.train.images.shape, "标签组成:",mnist.train.labels.shape) batch_images,batch_labels=mnist.train.next_batch(batch_size=10) #批量读取数据 print(batch_images.shape,batch_labels.shape) print('标签值:',np.argmax(mnist.train.labels[1000]),end=' ') #np.argmax()得到实际值 print('独热编码表示:',mnist.train.labels[1000]) plot_image(mnist.train.images[1000]) #显示数据集中第1000张图片

输出训练集 的数量有55000个,并打印特征值的shape为(55000,784),其中784代表每张图片由28*28个像素点组成,由于是黑白图片,每个像素点只有黑白单通道,即通过784个数可以描述一张图片的特征值。可以将图片在Jupyter中输出,将784个特征值reshape为28×28的二维数组,传给plt.imshow()函数,之后再通过show()输出。

MNIST提供next_batch()方法用于批量读取数据集,例如上面批量读取10个对应的images与labels数据并分别返回。该方法会按顺序一直往后读取,直到结束后会自动打乱数据,重新继续读取。

在打开mnist数据集时,第二个参数设置one_hot,表示采用独热编码方式打开。独热编码是一种稀疏向量,其中一个元素为1,其他元素均为0,常用于表示有限个可能的组合情况。例如数字6的独热编码为第7个分量为1,其他为0的数组。可以通过np.argmax()函数返回数组最大值的下标,即独热编码表示的实际数字。通过独热编码可以将离散特征的某个取值对应欧氏空间的某个点,有利于机器学习中特征之间的距离计算

数据集的划分,一种划分为训练集用于模型的训练,测试集用于结果的测试,要求集合数量足够大,而且具有代表性。但是在多次执行后,会导致模型向测试集数据进行拟合,从而导致测试集数据失去了测试的效果。因此将数据集进一步划分为训练集、验证集、测试集,将训练后的模型用验证集验证,当多次迭代结束之后再拿测试集去测试。MNIST数据集中的训练集为mnist.train,验证集为mnist.validation,测试集为mnist.test

2、逻辑回归

与线性回归相对比,房价预测是根据多个输入参数x与对应权重w相乘再加上b得到线性的输出房价。而还有许多问题的输出是非线性的、控制在[0,1]之间的,比如判断邮件是否为垃圾邮件,手写数字为0~9等,逻辑回归就是用于处理此类问题。例如电子邮件分类器输出0.8,表示该邮件为垃圾邮件的概率是0.8.

逻辑回归通过Sigmoid函数保证输出的值在[0,1]之间,该函数可以将全体实数映射到[0,1],从而将线性的输出转换为[0,1]的数。其定义与图像如下:

在逻辑回归中如果采用均方差的损失函数,带入sigmoid会得到一个非凸函数,这类函数会有多个极小值,采用梯度下降法便无法求得最优解。因此在逻辑回归中采用对数损失函数,其中y是特征值x的标签,y'是预测值。

在手写数字识别中,通过单层神经元产生连续的输出值y,将y再输入到softmax层处理,经过函数计算将结果映射为0~9每个数字对应的概率,概率越大表示该图片越像某个数字,所有数字的概率之和为1

交叉熵损失函数:交叉熵用于刻画两个概率分布之间的距离,其中p代表正确答案,q代表预测值,交叉熵越小距离越近,从而模型的预测越准确。例如正确答案为(1,0,0),甲模型预测为(0.5,0.2,0.3),其交叉熵=-1*log0.5≈0.3,乙模型(0.7,0.1,0.2),其交叉熵=-1*log0.7≈0.15,所以乙模型预测更准确

模型的训练

首先定义二维浮点数占位符x、y,以及二维参数变量W、b并随机赋初值。之后定义前向计算为向量x与W对应叉乘再加b,并将得到的线性结果经过softmax处理得到独热编码预测值。

之后定义准确率accuracy,其值为预测值pred与真实值y相等个数来衡量

接下来初始化变量、设置超参数,并定义损失函数、优化器,之后开始训练。每轮训练中分批次读取数据进行训练,每轮训练结束后输出损失与准确率。

import numpy as np import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist=input_data.read_data_sets('MNIST_data/',one_hot=True) import matplotlib.pyplot as plt #定义占位符、变量、前向计算 x=tf.placeholder(tf.float32,[None,784],name='x') y=tf.placeholder(tf.float32,[None,10],name='y') W=tf.Variable(tf.random_normal([784,10]),name='W') b=tf.Variable(tf.zeros([10]),name='b') forward=tf.matmul(x,W)+b pred=tf.nn.softmax(forward) #通过softmax将线性结果分类处理 #计算预测值与真实值的匹配个数 correct_prediction=tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) #将上一步得到的布尔值转换为浮点数,并求平均值,得到准确率 accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) ss=tf.Session() init=tf.global_variables_initializer() ss.run(init) #超参数设置 train_epochs=50 batch_size=100 #每个批次的样本数 batch_num=int(mnist.train.num_examples/batch_size) #一轮需要训练多少批 learning_rate=0.01 #定义交叉熵损失函数、梯度下降优化器 loss_function=tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) optimizer=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) for epoch in range(train_epochs): for batch in range(batch_num): #分批次读取数据进行训练 xs,ys=mnist.train.next_batch(batch_size) ss.run(optimizer,feed_dict={x:xs,y:ys}) #每轮训练结束后通过带入验证集的数据,检测模型的损失与准去率 loss,acc=ss.run([loss_function,accuracy],\ feed_dict={x:mnist.validation.images,y:mnist.validation.labels}) print('第%2d轮训练:损失为:%9f,准确率:%.4f'%(epoch+1,loss,acc))

从每轮训练结果可以看出损失在逐渐下降,准确率在逐步上升。

结果预测

使用训练好的模型对测试集中的数据进行预测,即将mnist.test.images数据带入去求pred的值。

为了使结果更便于显示,可以借助plot函数库将图片数据显示出来,并配以文字label与predic的值。首先通过plt.gcf()得到一副图像资源并设置其大小。再通过plt.subplot(5,5,index+1)函数将其划分为5×5个子图,遍历第index+1个子图,分别将图像资源绘制到子图,通过set_title()设置每个子图的title显示内容。子图绘制结束后显示整个图片,并调用函数传入图片、标签、预测值等参数。

prediction=ss.run(tf.argmax(pred,1),feed_dict={x:mnist.test.images}) def show_result(images,labels,prediction,index,num=10): #绘制图形显示预测结果 pic=plt.gcf() #获取当前图像 pic.set_size_inches(10,12) #设置图片大小 for i in range(0,num): sub_pic=plt.subplot(5,5,i+1) #获取第i个子图 #将第index个images信息显示到子图上 sub_pic.imshow(np.reshape(images[index],(28,28)),cmap='binary') title="label:"+str(np.argmax(labels[index])) #设置子图的title内容 if len(prediction)>0: title+=",predict:"+str(prediction[index]) sub_pic.set_title(title,fontsize=10) sub_pic.set_xticks([]) #设置x、y坐标轴不显示 sub_pic.set_yticks([]) index+=1 plt.show() show_result(mnist.test.images,mnist.test.labels,prediction,10)

运行结果如下,可以看到预测的结果大多准确

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python加密解密算法与技巧总结》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

您可能感兴趣的文章:神经网络(BP)算法Python实现及应用Python实现的三层BP神经网络算法示例Python编程实现的简单神经网络算法示例python构建深度神经网络(DNN)Python与人工神经网络:使用神经网络识别手写图像介绍TensorFlow平台下Python实现神经网络Python实现的递归神经网络简单示例详解python实现识别手写MNIST数字集的程序python读取二进制mnist实例详解python MNIST手写识别数据调用API的方法Python tensorflow实现mnist手写数字识别示例【非卷积与卷积实现】Python利用全连接神经网络求解MNIST问题详解



逻辑回归 回归 回归模型 模型 mnist Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号