在 JDK 1.7 中 HashMap 是以数组加链表的形式组成的,JDK 1.8 之后新增了红黑树的组成结构,当链表大于 8 时,链表结构会转换成红黑树结构,它的组成结构如下图所示:
数组中元素结构:
static class Node implements Map.Entry {
final int hash;
final K key;
V value;
Node next;
}
JDK 1.8 之所以添加红黑树是因为一旦链表过长,会严重影响 HashMap 的性能,而红黑树具有快速增删改查的特点,这样就可以有效的解决链表过长时操作比较慢的问题。
HashMap 源码中包含了以下几个属性:
// HashMap 初始化长度
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// HashMap 最大长度
static final int MAXIMUM_CAPACITY = 1 << 30; // 1073741824
// 默认的加载因子 (扩容因子)
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 转换红黑树的临界值,当链表长度大于此值时,会把链表结构转换为红黑树结构
static final int TREEIFY_THRESHOLD = 8;
// 转换链表的临界值,当元素小于此值时,会将红黑树结构转换成链表结构
static final int UNTREEIFY_THRESHOLD = 6;
// 最小树容量
static final int MIN_TREEIFY_CAPACITY = 64;
什么是加载因子?加载因子为什么是 0.75?
加载因子也叫扩容因子或负载因子,用来判断什么时候进行扩容的,假如加载因子是0.5,HashMap的初始化容量是16,那么当HashMap中有16*0.5=8个元素时,HashMap就会进行扩容。
为什么是0.75:
这其实是出于容量和性能之间平衡的结果:
当加载因子设置比较大的时候,扩容的门槛就被提高了,扩容发生的频率比较低,占用的空间会比较小,但此时发生 Hash 冲突的几率就会提升,因此需要更复杂的数据结构来存储元素,这样对元素的操作时间就会增加,运行效率也会因此降低;
而当加载因子值比较小的时候,扩容的门槛会比较低,因此会占用更多的空间,此时元素的存储就比较稀疏,发生哈希冲突的可能性就比较小,因此操作性能会比较高。
所以综合了以上情况就取了一个 0.5 到 1.0 的平均数 0.75 作为加载因子。
查询get, getNodepublic V get(Object key){
Nodee;
//对key进行哈希操作
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node getNode(int hash, Object key) {
Node[] tab; Node first, e; int n; K k;
// 非空判断
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 判断第一个元素是否是要查询的元素
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 下一个节点非空判断
if ((e = first.next) != null) {
// 如果第一节点是树结构,则使用 getTreeNode 直接获取相应的数据
if (first instanceof TreeNode)
return ((TreeNode)first).getTreeNode(hash, key);
do {// 非树结构,循环节点判断
// hash 相等并且 key 相同,则返回此节点
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
从以上源码可以看出,当哈希冲突时我们需要通过判断 key 值是否相等,才能确认此元素是不是我们想要的元素。
新增方法put, putVal public V put(K key, V value) {
// 对 key 进行哈希操作
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node[] tab; Node p; int n, i;
// 哈希表为空则创建表
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 根据 key 的哈希值计算出要插入的数组索引 i
if ((p = tab[i = (n - 1) & hash]) == null)
// 如果 table[i] 等于 null,表示该节点还没有元素则直接插入
else {
Node e; K k;
// 如果 key 已经存在了,直接覆盖 value
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果 key 不存在,判断是否为红黑树
else if (p instanceof TreeNode)
// 是红黑树,直接插入键值对
e = ((TreeNode)p).putTreeVal(this, tab, hash, key, value);
else {
// 否则为链表结构,循环准备插入
for (int binCount = 0; ; ++binCount) {
// 下一个元素为空时(即链表的尾部插入)
p.next = newNode(hash, key, value, null);
// 插入后判断,链表长度大于 8 转换为红黑树进行处理
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// key 已经存在直接覆盖 value
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 超过最大容量,扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
扩容方法 resize
final Node[] resize()
// 扩容前的数组
Node[] oldTab = table;
// 扩容前的数组的大小和阈值
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold; (capacity * load factor)
// 预定义新数组的大小和阈值
int newCap, newThr = 0;
if (oldCap > 0) {
// 超过最大值就不再扩容了
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 扩大容量为当前容量的两倍,但不能超过 MAXIMUM_CAPACITY
else if ((newCap = oldCap << 1) = DEFAULT_INITIAL_CAPACITY)
newThr = oldThr < 0) // initial capacity was placed in threshold
newCap = oldThr;
// 如果初始化的值为 0,则使用默认的初始化容量
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 如果新的容量等于 0
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node[] newTab = (Node[])new Node[newCap];
// 开始扩容,将新的容量赋值给 table
table = newTab;
// 原数据不为空,将原数据复制到新 table 中
if (oldTab != null) {
// 循环数组,复制非空元素到新 table
for (int j = 0; j < oldCap; ++j) {
Node e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
// 如果链表只有一个元素,则进行直接赋值
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
// 如果该节点是个红黑树, 进行相关的操作
else if (e instanceof TreeNode)
((TreeNode)e).split(this, newTab, j, oldCap);
// 否则为链表,进行链表复制,JDK 1.8 扩容优化部分
else { // preserve order
Node loHead = null, loTail = null;
Node hiHead = null, hiTail = null;
Node next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引 + oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 将原索引放到哈希桶中(即数组)
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 将原索引 + oldCap 放到哈希桶中
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
从以上源码可以看出,JDK1.8在扩容时并没有像JDK1.7那样,重新计算每个元素的哈希值,而是通过高位运算(e.hash&oldCap)来确定元素是否需要移动,比如e的信息如下:
e.hash = 10 0000 1010 oldCap = 16 0001 0000使用 e.hash & oldCap 得到的结果高一位为 0, 当结果为 0 时 表示元素在扩容时位置不会发生任何变化,第二种情况:
e.hash = 10 0001 1010 oldCap = 16 0001 0000这样得到的结果高一位为 1 , 当结果为 1 时, 表示元素在扩容时位置发生了变化, 新的下标位置 = 原下标位置 + 原数组长度。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zxjcqSTC-1584156615907)(C:\Users\14500\AppData\Roaming\Typora\typora-user-images\1584155742994.png)]
其中红色的虚线图代表了扩容时元素移动的位置。
HashMap 死循环分析以 JDK 1.7 为例,假设 HashMap 默认大小为 2,原本 HashMap 中有一个元素 key(5),我们再使用两个线程:t1 添加元素 key(3),t2 添加元素 key(7),当元素 key(3) 和 key(7) 都添加到 HashMap 中之后,线程 t1 在执行到 Entry next = e.next; 时,交出了 CPU 的使用权, 那么此时线程t1中的e指向了key(3),而next指向了key(7);之后线程t2重新rehash之后链表的顺序被反转,链表的位置变成了 key(5) → key(7) → key(3),其中 “→” 用来表示下一个元素。 当 t1 重新获得执行权之后,先执行 newTalbe[i] = e 把 key(3) 的 next 设置为 key(7),而下次循环时查询到 key(7) 的 next 元素为 key(3),于是就形成了 key(3) 和 key(7) 的循环引用,因此就导致了死循环的发生,如下图所示:
当然发生死循环的原因是 JDK 1.7 链表插入方式为首部倒序插入,这个问题在 JDK 1.8 得到了改善,变成了尾部正序插入。 因为 HashMap 本身就是非线程安全的,如果要在多线程下,建议使用 ConcurrentHashMap 替代,