傅里叶变换
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
傅里叶逆变换
img_back = cv.idft(f_ishift)
实验:将图像转换到频率域,低通滤波,将频率域转回到时域,显示图像
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
img = cv.imread('d:/paojie_g.jpg',0)
rows, cols = img.shape
crow, ccol = rows//2 , cols//2
dft = cv.dft(np.float32(img),flags = cv.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+31, ccol-30:ccol+31, :] = 1
# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv.idft(f_ishift)
img_back = cv.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Low Pass Filter'), plt.xticks([]), plt.yticks([])
plt.show()
您可能感兴趣的文章:详解pycharm的python包opencv(cv2)无代码提示问题的解决Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)python基于opencv实现人脸识别python opencv实现直线检测并测出倾斜角度(附源码+注释)Python使用Opencv实现边缘检测以及轮廓检测的实现OpenCV+python实现膨胀和腐蚀的示例python opencv肤色检测的实现示例OpenCV+Python3.5 简易手势识别的实现python 使用OpenCV进行简单的人像分割与合成