【信号与系统】笔记(3-2)信号的频谱与傅里叶变换(一图看懂傅里叶变换)

Thadea ·
更新时间:2024-11-14
· 512 次阅读

Author:AXYZdong
自动化专业 工科男
有一点思考,有一点想法,有一点理性!

文章目录一图看懂傅里叶变换前言一、周期信号的频谱1、周期信号频谱的相关概念2、周期信号频谱的特点3、谱线的结构与波形参数的关系二、非周期信号的频谱1、周期信号 →\to→ 非周期信号2、频谱密度函数3、傅里叶变换与反变换3.1傅里叶变化3.2傅里叶反变化4、常用函数的傅里叶变换总结 一图看懂傅里叶变换

图片来自@胖福的小木屋
从时域来看,我们会看到一个近似为矩形的波,而我们知道这个矩形的波可以被差分为一些正弦波的叠加。
而从频域方向来看,我们就看到了每一个正余弦波的幅值,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为 0 的正弦波!
也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。一个矩形就这么叠加而成了。但是要多少个正弦波叠加起来才能形成一个标准 90 度角的矩形波呢?不幸的告诉大家,答案是无穷多个。

前言

连续系统频域分析中的 信号的频谱与傅里叶变换

信号的频谱:信号的某种特征量与信号频率变化的关系。

频谱图:将幅度和相位分量用一定高度的直线表示。

一、周期信号的频谱 1、周期信号频谱的相关概念

周期信号频谱:周期信号中各次谐波幅值、相位随频率变化关系。

Au∼ωA_u\sim \omegaAu​∼ω :振幅频谱图

φu∼ω\varphi _u\sim \omegaφu​∼ω :相位频谱图

三角函数形式分解:f(t)=A02+∑n=1∞Ancos⁡(nΩt+φn)f(t)=\frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n \Omega t + \varphi_n)f(t)=2A0​​+∑n=1∞​An​cos(nΩt+φn​)

虚指数函数形式分解:f(t)=∑n=−∞∞FnejnΩtf(t)= \sum_{n=-\infty}^{\infty} F_n e^{jn \Omega t}f(t)=∑n=−∞∞​Fn​ejnΩt

频谱分类 直流分量 幅度 相位 nnn
单边谱 A02\frac{A_0}{2}2A0​​ AnA_nAn​ φn\varphi_nφn​ n=0,1,2,...n=0,1,2,...n=0,1,2,...
双边谱 F0F_0F0​ |FnF_nFn​| φn\varphi_nφn​ n=0,±1,±2,...n=0, \pm1, \pm2,...n=0,±1,±2,...

单边谱和双边谱的关系:
cos⁡(nΩt)=12(ejnΩt+e−jnΩt)Fn=∣Fn∣ejφn=12Anejφn∣Fn∣=12An,φn=−arctan⁡bnan \cos( n \Omega t) = \frac{1}{2} (e^{jn \Omega t}+e^{-jn \Omega t})\\ F_n=|F_n| e^{j \varphi_n} = \frac{1}{2} A_n e^{j \varphi_n}\\ |F_n|= \frac{1}{2} A_n, \varphi_n=- \arctan\frac{b_n}a_n{} cos(nΩt)=21​(ejnΩt+e−jnΩt)Fn​=∣Fn​∣ejφn​=21​An​ejφn​∣Fn​∣=21​An​,φn​=−arctanabn​​n​

例:周期信号f(t)=1−12cos⁡(π4t−2π3)+14sin⁡(π3t−π6)f(t) = 1- \frac{1}{2} \cos(\frac{\pi}{4}t-\frac{2\pi}{3}) + \frac{1}{4} \sin(\frac{\pi}{3}t-\frac{ \pi}{6})f(t)=1−21​cos(4π​t−32π​)+41​sin(3π​t−6π​)

求该周期信号的基波周期 TTT ,基波角频率 Ω\OmegaΩ ,平均功率 PPP ,并画出它的频谱图。

解:
改写f(t)表达式:f(t)=1+12cos⁡(π4t+π3)+14cos⁡(π3t−2π3) 改写f(t)表达式:f(t)=1 + \frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3}) + \frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3}) 改写f(t)表达式:f(t)=1+21​cos(4π​t+3π​)+41​cos(3π​t−32π​)
12cos⁡(π4t+π3)周期T1=8\frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3}) 周期 T_1=821​cos(4π​t+3π​)周期T1​=8

14cos⁡(π3t−2π3)周期T2=6\frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3})周期 T_2=641​cos(3π​t−32π​)周期T2​=6

∴f(t)周期T=24,基波角频率Ω=2πT=π12\therefore f(t) 周期T=24, 基波角频率 \Omega = \frac{ 2\pi}{T} =\frac{ \pi}{12}∴f(t)周期T=24,基波角频率Ω=T2π​=12π​

由帕斯瓦尔等式,P=1+12⋅(12)2+12⋅(14)2=3732由帕斯瓦尔等式,P=1+\frac{ 1}{2} \cdot(\frac{ 1}{2})^2 +\frac{ 1}{2} \cdot(\frac{ 1}{4})^2 =\frac{ 37}{32}由帕斯瓦尔等式,P=1+21​⋅(21​)2+21​⋅(41​)2=3237​

频谱图:

12cos⁡(π4t+π3)\frac{1}{2} \cos(\frac{\pi}{4}t + \frac{\pi}{3})21​cos(4π​t+3π​) 是 f(t)f(t)f(t) 的 [π/4]/[π/12]=3[\pi/4]/[\pi/12]=3[π/4]/[π/12]=3 次谐波分量;

14cos⁡(π3t−2π3)\frac{1}{4} \cos(\frac{\pi}{3}t-\frac{ 2\pi}{3})41​cos(3π​t−32π​) 是 f(t)f(t)f(t) 的 [π/3]/[π/12]=4[\pi/3]/[\pi/12]=4[π/3]/[π/12]=4 次谐波分量;

在这里插入图片描述

2、周期信号频谱的特点

1、离散型:以基频 Ω\OmegaΩ 为间隔的若干离散谱线组成

2、谐波性:谱线仅含有基频 Ω\OmegaΩ 的整数倍分量

3、收敛性:整体趋势减小

周期信号频谱的特点简要的概括了一下

3、谱线的结构与波形参数的关系

1、TTT一定,τ\tauτ变小,此时 Ω\OmegaΩ (谱线间隔)不变。两零点之间的谱线数:

ωΩ=2πτ/2πT,增多 \frac{\omega}{\Omega} = \frac{2 \pi}{\tau} /\frac{2\pi}{T},增多 Ωω​=τ2π​/T2π​,增多
2、τ\tauτ 一定, TTT 增大,间隔 Ω\OmegaΩ 减小,频谱变密,幅度减小。

如果周期 TTT 无限增长( T→∞T\to \inftyT→∞ ),周期信号就变成了非周期信号,那么,谱线间隔将趋于零,周期信号的离散频谱就过渡到非周期信号的连续频谱。各频率分量的幅度也趋近于无穷小。

二、非周期信号的频谱 1、周期信号 →\to→ 非周期信号

频谱函数:Fn=1T∫−2T2Tf(t)e−jnΩtdtF_n= \frac{1}{T} \int_{-\frac{2}{T}}^{ \frac{2}{T}} f(t) e^{-j n \Omega t}dtFn​=T1​∫−T2​T2​​f(t)e−jnΩtdt

T→∞T\to \inftyT→∞ 时:
f(t)周期信号→非周期信号Fn→0谱线间隔Ω→0离散频谱→连续频谱,频谱幅度→0 f(t) 周期信号\to 非周期信号\\ F_n \to0\\ 谱线间隔 \Omega \to 0\\ 离散频谱\to 连续频谱 ,频谱幅度\to 0 f(t)周期信号→非周期信号Fn​→0谱线间隔Ω→0离散频谱→连续频谱,频谱幅度→0

2、频谱密度函数

频谱函数:Fn=1T∫−2T2Tf(t)e−jnΩtdtF_n= \frac{1}{T} \int_{-\frac{2}{T}}^{ \frac{2}{T}} f(t) e^{-j n \Omega t}dtFn​=T1​∫−T2​T2​​f(t)e−jnΩtdt
T→∞T\to \inftyT→∞ 时:
Ω→dω(无穷小量)nΩ→ω(离散→连续) \Omega \to d\omega (无穷小量)\\ n\Omega \to \omega (离散\to连续)\\ Ω→dω(无穷小量)nΩ→ω(离散→连续)

F(jω)=lim⁡T→∞Fn1/T=lim⁡T→∞FnTF(j \omega)=\lim_{T\to \infty} \frac{F_n}{1/T}=\lim_{T\to \infty}F_nT F(jω)=T→∞lim​1/TFn​​=T→∞lim​Fn​T
                                                                                       =lim⁡T→∞∫−2T2Tf(t)e−jnΩtdt=\lim_{T\to \infty} \int_{-\frac{2}{T}}^{\frac{2}{T}} f(t) e^{-j n \Omega t}dt=limT→∞​∫−T2​T2​​f(t)e−jnΩtdt

                                                                                       =∫−∞∞f(t)e−jωtdt=\int_{-\infty}^{\infty} f(t) e^{-j \omega t}dt=∫−∞∞​f(t)e−jωtdt

3、傅里叶变换与反变换 3.1傅里叶变化

F(jω)=∫−∞∞f(t)e−jωtdtF(j \omega)= \int_{-\infty}^{\infty} f(t) e^{-j \omega t}dtF(jω)=∫−∞∞​f(t)e−jωtdt

F(jω)F(j \omega)F(jω) 称为 f(t)f(t)f(t) 的傅里叶变换

F(jω)F(j \omega)F(jω) 一般为复数,写成 F(jω)F(j \omega)F(jω) = ∣F(jω)∣ejφ(ω)|F(j \omega)| e^{j \varphi(\omega)}∣F(jω)∣ejφ(ω)

F(jω)∼ωF(j \omega)\sim \omegaF(jω)∼ω :幅频度谱图,频率 ω\omegaω 的偶函数

φu∼ω\varphi _u\sim \omegaφu​∼ω :相位频谱图,频率 ω\omegaω 的奇函数

3.2傅里叶反变化

f(t)=12π∫−∞∞f(t)ejωtdωf(t)= \frac{1}{2\pi}\int_{-\infty}^{\infty} f(t) e^{j \omega t}d\omegaf(t)=2π1​∫−∞∞​f(t)ejωtdω

符号差别:

在这里插入图片描述

4、常用函数的傅里叶变换

e−αtϵ(t)⟷1α+jωe^{- \alpha t}\epsilon(t) \longleftrightarrow \frac{1}{\alpha+j \omega}e−αtϵ(t)⟷α+jω1​
e−α∣t∣⟷2αα2+ω2e^{- \alpha |t|} \longleftrightarrow \frac{2\alpha}{\alpha ^2+ \omega ^2} e−α∣t∣⟷α2+ω22α​
gτ(t)⟷τSa(ωτ2)g_\tau(t) \longleftrightarrow \tau Sa(\frac{\omega \tau}{2}) gτ​(t)⟷τSa(2ωτ​)
δ(t)⟷1 \delta(t) \longleftrightarrow 1 δ(t)⟷1
δ′(t)⟷jω\delta'(t) \longleftrightarrow j \omega δ′(t)⟷jω
1⟷2πδ(ω)1 \longleftrightarrow2\pi \delta(\omega) 1⟷2πδ(ω)
sgn(t)⟷2jω sgn(t) \longleftrightarrow \frac{2}{ j \omega} sgn(t)⟷jω2​
ϵ(t)⟷πδ(ω)+1jω \epsilon(t) \longleftrightarrow \pi \delta(\omega) + \frac{1}{ j \omega} ϵ(t)⟷πδ(ω)+jω1​

总结

在这里插入图片描述
时域里面原函数 ⟶\longrightarrow⟶ 频域里面相函数
频域里面相函数 ⟶\longrightarrow⟶ 时域里面原函数

周期信号 →\to→ 傅里叶级数 →\to→ 频谱

非周期信号 →\to→ 傅里叶变换 →\to→ 频谱



如果觉着帮到你的话,点个赞支持一下呢!!!^ _ ^
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注我哦!

说明:部分图片来源于网络,如有侵权请联系我删除。


作者:AXYZdong



傅里叶变换 系统

需要 登录 后方可回复, 如果你还没有账号请 注册新账号