定义比赛用来评价模型的对数均方根误差。给定预测值y^1,…,y^n\hat y_1, \ldots, \hat y_ny^1,…,y^n和对应的真实标签y1,…,yny_1,\ldots, y_ny1,…,yn,它的定义为
1n∑i=1n(log(yi)−log(y^i))2. \sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log(y_i)-\log(\hat y_i)\right)^2}. n1i=1∑n(log(yi)−log(y^i))2.
对数均方根误差的实现如下面的log_rmse(net, features, labels) 函数。
# This Python 3 environment comes with many helpful analytics libraries installed
# It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load in
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import torch
from torch import nn
# Input data files are available in the "../input/" directory.
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
# for dirname, _, filenames in os.walk('/kaggle/input'):
# for filename in filenames:
# print(os.path.join(dirname, filename))
# Any results you write to the current directory are saved as output.
train_data = pd.read_csv("../input/house-prices-advanced-regression-techniques/train.csv")
test_data = pd.read_csv("../input/house-prices-advanced-regression-techniques/test.csv")
print(test_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
print("\n")
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
# print(train_data.iloc[0])
print(train_data.shape, test_data.shape)
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
all_features[numeric_features] = all_features[numeric_features].fillna(0)
all_features = pd.get_dummies(all_features, dummy_na=True)
# print(all_features.shape)
n_train = train_data.shape[0]
# get data tensor
train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float)
test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float)
train_lables = torch.tensor(train_data.SalePrice.values, dtype=torch.float)
# test_lables = torch.tensor(test_data.SalePrice.values, dtype=torch.float)
# print(train_features.shape)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(331, 1)
self.relu = nn.ReLU(True)
def forward(self,input):
output = self.fc1(input)
output = self.relu(output)
return output
net = Net()
for param in net.parameters():
nn.init.normal_(param, mean=0, std=0.01)
loss_fn = nn.MSELoss()
def log_rmse(net, features, labels):
with torch.no_grad():
# 将小于1的值设成1,使得取对数时数值更稳定
clipped_preds = torch.max(net(features), torch.tensor(1.0))
rmse = torch.sqrt(2 * loss_fn(clipped_preds.log(), labels.log()).mean())
return rmse.item()
def train(net, train_data, train_lables, num_epochs, learning_rate, weight_decay, batch_size):
dataset = torch.utils.data.TensorDataset(train_features, train_lables)
train_iter = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
optimizer = torch.optim.Adam(params=net.parameters(), lr=learning_rate, weight_decay=weight_decay)
net = net.float()
for epoch in range(num_epochs):
for X, y in dataset:
net.train()
X = net(X.float())
l = loss_fn(X, y.float())
optimizer.zero_grad()
l.backward()
optimizer.step()
train_ls.append(log_rmse(net, train_features, train_lables))
# if test_labels is not None:
# test_ls.append(log_rmse(net, test_features, test_labels))
return train_ls
num_epochs = 50
learning_rate = 0.01
weight_decay = 0
batch_size = 64
train_ls = []
train(net, train_data, train_lables, num_epochs, learning_rate, weight_decay, batch_size)
print(train_ls[40:])
K折交叉验证
我们在模型选择、欠拟合和过拟合中介绍了KKK折交叉验证。它将被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i
折交叉验证时所需要的训练和验证数据。
def get_k_fold_data(k, i, X, y):
# 返回第i折交叉验证时所需要的训练和验证数据
assert k > 1
fold_size = X.shape[0] // k
X_train, y_train = None, None
for j in range(k):
idx = slice(j * fold_size, (j + 1) * fold_size)
X_part, y_part = X[idx, :], y[idx]
if j == i:
X_valid, y_valid = X_part, y_part
elif X_train is None:
X_train, y_train = X_part, y_part
else:
X_train = torch.cat((X_train, X_part), dim=0)
y_train = torch.cat((y_train, y_part), dim=0)
return X_train, y_train, X_valid, y_valid
在KKK折交叉验证中我们训练KKK次并返回训练和验证的平均误差
def k_fold(k, X_train, y_train, num_epochs,
learning_rate, weight_decay, batch_size):
train_l_sum, valid_l_sum = 0, 0
for i in range(k):
data = get_k_fold_data(k, i, X_train, y_train)
net = get_net(X_train.shape[1])
train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
weight_decay, batch_size)
train_l_sum += train_ls[-1]
valid_l_sum += valid_ls[-1]
if i == 0:
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse',
range(1, num_epochs + 1), valid_ls,
['train', 'valid'])
print('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1], valid_ls[-1]))
return train_l_sum / k, valid_l_sum / k
模型选择
我们使用一组未经调优的超参数并计算交叉验证误差。可以改动这些超参数来尽可能减小平均测试误差。
有时候你会发现一组参数的训练误差可以达到很低,但是在KKK折交叉验证上的误差可能反而较高。这种现象很可能是由过拟合造成的。因此,当训练误差降低时,我们要观察KKK折交叉验证上的误差是否也相应降低。
k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size)
print('%d-fold validation: avg train rmse %f, avg valid rmse %f' % (k, train_l, valid_l))
预测并在Kaggle中提交结果
下面定义预测函数。在预测之前,我们会使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。
def train_and_pred(train_features, test_features, train_labels, test_data,
num_epochs, lr, weight_decay, batch_size):
net = get_net(train_features.shape[1])
train_ls, _ = train(net, train_features, train_labels, None, None,
num_epochs, lr, weight_decay, batch_size)
d2l.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'rmse')
print('train rmse %f' % train_ls[-1])
preds = net(test_features).detach().numpy()
test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
submission.to_csv('./submission.csv', index=False)
# sample_submission_data = pd.read_csv("../input/house-prices-advanced-regression-techniques/sample_submission.csv")