c++11 多线程编程——如何实现线程安全队列

Pamela ·
更新时间:2024-11-10
· 936 次阅读

线程安全队列的接口文件如下:

#include <memory> template<typename T> class threadsafe_queue { public: threadsafe_queue(); threadsafe_queue(const threadsafe_queue&); threadsafe_queue& operator=(const threadsafe_queue&) = delete; void push(T new_value); bool try_pop(T& value); std::shared_ptr<T> try_pop(); void wait_and_pop(T& value); std::shared_ptr<T> wait_and_pop(); bool empty() const; };

push函数

push()函数实现向队列添加数据的功能。添加数据后,使用std::condition_variable的notify_one通知取数据时被阻塞的线程。

void push(T tValue) { std::shared_ptr<T> data(std::make_shared<T>(std::move(tValue))); std::lock_guard<std::mutex> lk(mut); data_queue.push(data); data_con.notify_one(); }

wait_and_pop函数

wait_and_pop()函数实现从队列取数据的功能,当队列为空时,线程被挂起,等待有数据时被唤醒。

注意,这两个函数中没有使用std::lock_guard,而是使用std::unique_lock,这是为什么呢?

这是因为std::condition_variable的wait函数会首先检测条件data_queue.empty()是否满足,如果队列为空,wait函数会释放mutex,并被挂起;当有新的数据进入队列,std::condition_variable的wait函数会被唤醒,重新尝试获取mutex,然后检测队列是否为空,如果队列非空,则继续向下执行。由于函数的执行过程存在锁的释放和重新获取,所以没有使用std::lock_guard,而是选择了std::unique_lock。

void wait_and_pop(T& value) { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk,[this]{return !data_queue.empty();}); value=data_queue.front(); data_queue.pop(); } std::shared_ptr<T> wait_and_pop() { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk,[this]{return !data_queue.empty();}); std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; }

try_pop函数

try_pop函数提供非阻塞调用下的弹出队列(queue)的功能。弹出成功返回true或者非空shared_ptr,失败则返回false或者nullptr。

bool try_pop(T& value) { std::lock_guard<std::mutex> lk(mut); if(data_queue.empty()) { return false; } value = data_queue.front(); data_queue.pop(); return true; } std::shared_ptr<T> try_pop() { std::lock_guard<std::mutex> lk(mut); if(data_queue.empty()) { return std::shared_ptr<T>(); } std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; }

empty函数

bool empty() const { std::lock_guard<std::mutex> lk(mut); return data_queue.empty(); }

这里注意,empty()是const类型的成员函数,表明它声明自己并不改变任何成员变量,但是mutex lock是一个mutating opertation,所以必须要将mut声明为mutable类型(mutable std::mutex mut)。

完整代码如下:

#include <queue> #include <memory> #include <mutex> #include <condition_variable> template<typename T> class threadsafe_queue { private: mutable std::mutex mut; std::queue<T> data_queue; std::condition_variable data_cond; public: threadsafe_queue(){} threadsafe_queue(threadsafe_queue const& other) { std::lock_guard<std::mutex> lk(other.mut); data_queue=other.data_queue; } void push(T new_value) { std::lock_guard<std::mutex> lk(mut); data_queue.push(new_value); data_cond.notify_one(); } void wait_and_pop(T& value) { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk,[this]{return !data_queue.empty();}); value=data_queue.front(); data_queue.pop(); } std::shared_ptr<T> wait_and_pop() { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk,[this]{return !data_queue.empty();}); std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; } bool try_pop(T& value) { std::lock_guard<std::mutex> lk(mut); if(data_queue.empty()) return false; value=data_queue.front(); data_queue.pop(); return true; } std::shared_ptr<T> try_pop() { std::lock_guard<std::mutex> lk(mut); if(data_queue.empty()) return std::shared_ptr<T>(); std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; } bool empty() const { std::lock_guard<std::mutex> lk(mut); return data_queue.empty(); } };

以上就是c++ 如何实现线程安全队列的详细内容,更多关于c++ 线程安全队列的资料请关注软件开发网其它相关文章!

您可能感兴趣的文章:c++11多线程编程之std::async的介绍与实例C++11中多线程编程-std::async的深入讲解c++11新特性多线程操作实战C++多线程获取返回值方法详解C++基于消息队列的多线程实现示例代码C++多线程实现电子词典C++11并发编程:多线程std::threadC++多线程中的锁和条件变量使用教程c++多线程之死锁的发生的情况解析(包含两个归纳,6个示例)Windows下使用Dev-C++开发基于pthread.h的多线程程序实例linux下的C\C++多进程多线程编程实例详解C++多线程编程简单实例



c+ 队列 多线程编程 c++11 C++ 线程安全 多线程 线程

需要 登录 后方可回复, 如果你还没有账号请 注册新账号