堆排序
堆排序过程
动画显示
开始堆排序
代码实现
总结
堆排序堆排序是一种树形选择排序算法。
简单选择排序算法每次选择一个关键字最小的记录需要 O(n) 的时间,而堆排序选择一个关键字最小的记录需要 O(nlogn)的时间。
堆可以看作一棵完全二叉树的顺序存储结构。
在这棵完全二叉树中,如果每个节点的值都大于等于左边孩子的值,称为大根堆(最大堆、又叫大顶堆)。如果每个节点的值都小于等于左边孩子的值,称为小根堆(最小堆,小顶堆)。
可以,用数学符号表示如下:
堆排序过程构建初始堆
在输出堆的顶层元素后,从上到下进行调整,将顶层元素与其左右子树的根节点进行比较,并将最小的元素交换到堆的顶部;然后不断调整直到叶子节点得到新的堆。
假如,{1, 7, 9, 2, 4, 6, 3, 5, 8}
建堆,然后进行堆排序输出。
初始化堆,建堆操作图画演示:
首先根据无序序列 {1, 7, 9, 2, 4, 6, 3, 5, 8}
按照完全二叉树的顺序构建一棵完全二叉树,如图:
然后从最后一个分支节点 n/2开始调整堆,这里 9 / 2 = 4:
然后从 n/2−1 开始调整,即序号 3 开始调整,接着从 n/2-2 执行调整操作,如图所示:
一直重复到序号为 1 的节点:
最终通过此次调整堆,得到新的堆为 [9, 8, 6, 7, 4, 1, 3, 5, 2]
,得到新的堆后开始堆排序过程
构建完初始堆后,此时,我们可以进入堆排序,从上面的方法中,
我们可以已知我们构建的最大堆的堆顶是最大的记录,可以可以将堆顶交换到最后一个元素的位置,然后执行堆顶下沉操作,然后再执行堆调整操作(新的堆顶也是最大值),直到剩余一个节点,得到一个有序序列。
此时,我们又可以进行堆调整操作,如下图:
堆调整完毕,开始把新的堆顶 8 和最后一个记录 2 进行交换,然后将堆顶下沉,调整为堆,如下图所示:
从此我们得到新的堆顶 7 ,然后把 7 跟最后一个元素 3 进行交换,7 下沉,然后堆调整,慢慢得到堆顶 6 和 堆顶5,如图所示:
然后是 3 下沉:
最后,堆顶 2 与最后一个记录 1 进行交换,只剩一个节点,堆排序结束,如下图所示:
我们得到的新的序列按序号读取数据,就是一个有序序列。
代码实现最后,我们用代码来检验一下我们的动画过程是否正确,如下:
package main
import "fmt"
// 调整堆
func adjustHeap(array []int, currentIndex int, maxLength int) {
var noLeafValue = array[currentIndex] // 当前非叶子节点
// j 指向左孩子
// 当前非叶子节点的左节点为:2 * currentIndex + 1
for j := 2*currentIndex + 1; j <= maxLength; j = currentIndex*2 + 1 {
if j < maxLength && array[j] < array[j+1] { // 如果有右孩子,且左孩子比右孩子小
j++ // j 指向右孩子
}
if noLeafValue >= array[j] {
break // 非叶子节点大于孩子节点,跳过不交换
}
array[currentIndex] = array[j] // 移动到当前节点的父节点
currentIndex = j // j 指向交换后的新位置,继续向下比较
}
array[currentIndex] = noLeafValue // 放在合适的位置
}
// 初始化堆
func createHeap(array []int, length int) {
// 建堆
for i := length / 2; i >= 0; i-- {
adjustHeap(array, i, length-1)
}
}
func heapSort(array []int, length int) {
for i := length - 1; i > 0; i-- {
array[0], array[i] = array[i], array[0]
adjustHeap(array, 0, i-1)
}
}
func main() {
var unsorted = []int{1, 7, 9, 2, 4, 6, 3, 5, 8}
var length = len(unsorted)
fmt.Println("建堆之前:")
for i := 0; i < length; i++ {
fmt.Printf("%d,", unsorted[i])
}
fmt.Println()
fmt.Println("建堆之后:")
createHeap(unsorted, length)
for i := 0; i < length; i++ {
fmt.Printf("%d,", unsorted[i])
}
fmt.Printf("\n堆排序之后: \n")
heapSort(unsorted, length)
for i := 0; i < length; i++ {
fmt.Printf("%d,", unsorted[i])
}
}
运行结果:
[Running] go run "e:\Coding Workspaces\LearningGoTheEasiestWay\Go 数据结构\堆排序\main.go"
建堆之前:
1,7,9,2,4,6,3,5,8,
建堆之后:
9,8,6,7,4,1,3,5,2,
堆排序之后:
1,2,3,4,5,6,7,8,9,
可以看到,创建堆的结果 9,8,6,7,4,1,3,5,2
和排序结果 1,2,3,4,5,6,7,8,9
都是和我们图中的堆一样,所以说图看懂了代码也就变得有意思了。
总结一下堆排序的复杂度:
时间复杂度:堆排序主要耗费时间在初始堆和反复调整堆上,所以时间复杂度为 O(nlogn)O(nlogn)O(nlogn)
空间复杂度:交换记录需要一个辅助空间,所以空间复杂度为 O(1)O(1)O(1)
稳定性:堆排序多次交换关键字,可能会发生相等关键字排序前后位置不一样的情况,所以不稳定
推荐大家都自己画图体验一下堆排序的过程,这中间设计除了涉及到算法的精妙,也能体会到二叉树的遍历过程。
以上就是Go 数据结构之堆排序示例详解的详细内容,更多关于Go 数据结构堆排序的资料请关注软件开发网其它相关文章!