卷积神经网络基础
本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。
二维卷积层
本节介绍的是最常见的二维卷积层,常用于处理图像数据。
二维互相关运算
二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。
Image Name图1 二维互相关运算
互相关运算与卷积运算
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做的感受野(receptive field)。
以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为的输出记为,将与另一个形状为的核数组做互相关运算,输出单个元素。那么,在上的感受野包括的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。
填充和步幅
我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。
填充
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算
如果原输入的高和宽是和,卷积核的高和宽是和,在高的两侧一共填充行,在宽的两侧一共填充列,则输出形状为:
我们在卷积神经网络中使用奇数高宽的核,比如,的卷积核,对于高度(或宽度)为大小为的核,令步幅为1,在高(或宽)两侧选择大小为的填充,便可保持输入与输出尺寸相同。
步幅
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
图3 高和宽上步幅分别为3和2的二维互相关运算
一般来说,当高上步幅为,宽上步幅为时,输出形状为:
如果,,那么输出形状将简化为。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是。
当时,我们称填充为;当时,我们称步幅为。
多输入通道和多输出通道
之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是和(像素),那么它可以表示为一个的多维数组,我们将大小为3的这一维称为通道(channel)维。
多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。
图4 含2个输入通道的互相关计算
假设输入数据的通道数为,卷积核形状为,我们为每个输入通道各分配一个形状为的核数组,将个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把个核数组在通道维上连结,即得到一个形状为的卷积核。
多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为和,高和宽分别为和。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为的核数组,将它们在输出通道维上连结,卷积核的形状即。
对于输出通道的卷积核,我们提供这样一种理解,一个的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的的核数组,不同的核数组提取的是不同的特征。
多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为和,高和宽分别为和。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为的核数组,将它们在输出通道维上连结,卷积核的形状即。
对于输出通道的卷积核,我们提供这样一种理解,一个的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的的核数组,不同的核数组提取的是不同的特征。
1x1卷积层
最后讨论形状为的卷积核,我们通常称这样的卷积运算为卷积,称包含这种卷积核的卷积层为卷积层。图5展示了使用输入通道数为3、输出通道数为2的卷积核的互相关计算。
图5 1x1卷积核的互相关计算。输入和输出具有相同的高和宽
卷积核可在不改变高宽的情况下,调整通道数。卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么卷积层的作用与全连接层等价。
卷积层与全连接层的对比
二维卷积层经常用于处理图像,与此前的全连接层相比,它主要有两个优势:
一是全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。
二是卷积层的参数量更少。不考虑偏置的情况下,一个形状为的卷积核的参数量是,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是和,如果要用全连接层进行连接,参数数量就是。使用卷积层可以以较少的参数数量来处理更大的图像。
池化
二维池化层
池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。图6展示了池化窗口形状为的最大池化。
图6 池化窗口形状为 2 x 2 的最大池化
二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为的池化层称为池化层,其中的池化运算叫作池化。
池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。
在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。
LeNet
Convolutional Neural Networks
使用全连接层的局限性:
图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
对于大尺寸的输入图像,使用全连接层容易导致模型过大。
使用卷积层的优势:
卷积层保留输入形状。
卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。
LeNet 模型
LeNet分为卷积层块和全连接层块两个部分。下面我们分别介绍这两个模块。
卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。
卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。
全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。
在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。
总结:
卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。
GRU
RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)
⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系
RNN:
Ht=ϕ(XtWxh+Ht−1Whh+bh)
GRU:
Rt=σ(XtWxr+Ht−1Whr+br)Zt=σ(XtWxz+Ht−1Whz+bz)H˜t=tanh(XtWxh+(Rt⊙Ht−1)Whh+bh)Ht=Zt⊙Ht−1+(1−Zt)⊙H˜t
• 重置⻔有助于捕捉时间序列⾥短期的依赖关系;
• 更新⻔有助于捕捉时间序列⾥⻓期的依赖关系。
LSTM
长短期记忆long short-term memory :
遗忘门:控制上一时间步的记忆细胞 输入门:控制当前时间步的输入
输出门:控制从记忆细胞到隐藏状态
记忆细胞:⼀种特殊的隐藏状态的信息的流动
深度循环神经网络
双向循环神经网络
注意力机制
在“编码器—解码器(seq2seq)”⼀节⾥,解码器在各个时间步依赖相同的背景变量(context vector)来获取输⼊序列信息。当编码器为循环神经⽹络时,背景变量来⾃它最终时间步的隐藏状态。将源序列输入信息以循环单位状态编码,然后将其传递给解码器以生成目标序列。然而这种结构存在着问题,尤其是RNN机制实际中存在长程梯度消失的问题,对于较长的句子,我们很难寄希望于将输入的序列转化为定长的向量而保存所有的有效信息,所以随着所需翻译句子的长度的增加,这种结构的效果会显著下降。
与此同时,解码的目标词语可能只与原输入的部分词语有关,而并不是与所有的输入有关。例如,当把“Hello world”翻译成“Bonjour le monde”时,“Hello”映射成“Bonjour”,“world”映射成“monde”。在seq2seq模型中,解码器只能隐式地从编码器的最终状态中选择相应的信息。然而,注意力机制可以将这种选择过程显式地建模。
注意力机制框架
Attention 是一种通用的带权池化方法,输入由两部分构成:询问(query)和键值对(key-value pairs)。