数据挖掘TASK4_建模调参

Kate ·
更新时间:2024-11-13
· 507 次阅读

建模与调参

学习目标
掌握机器学习模型的建模与调参过程

内容介绍

线性回归模型:

线性回归对于特征的要求;

处理长尾分布;

理解线性回归模型;

模型性能验证:

评价函数与目标函数;

交叉验证方法;

留一验证方法;

针对时间序列问题的验证;

绘制学习率曲线;

绘制验证曲线;

嵌入式特征选择:

Lasso回归;

Ridge回归;

决策树;

模型对比:

常用线性模型;

常用非线性模型;

模型调参:

贪心调参方法;

网格调参方法;

贝叶斯调参方法;

代码示例

import pandas as pd import numpy as np import warnings warnings.filterwarnings('ignore') #定义reduce_men_usage函数,通过调整数据类型帮助我们减少数据所占内存空间 def reduce_mem_usage(df): start_men = df.memory_usage().sum() print('memory usage of dataframe is {:.2f} MB'.format(start_men)) for col in df.columns: col_type = df[col].dtype if col_type != object: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max np.iinfo(np.int16).min and c_max np.iinfo(np.int32).min and c_max np.iinfo(np.int64).min and c_max np.finfo(np.float16).min and c_max np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) else: df[col] = df[col].astype('category') end_men = df.memory_usage().sum() print('Memory usage after optimization is :{:.2f} MB'.format(end_men)) print('Decreased by {:.1f}%'.format(100*(start_men - end_men)/start_men)) return df sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv')) #sample_feature.head() memory usage of dataframe is 62099624.00 MB Memory usage after optimization is :16520255.00 MB Decreased by 73.4% continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']] print(continuous_feature_names) sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True) sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32) train = sample_feature[continuous_feature_names + ['price']] train_x = train[continuous_feature_names] train_y = train['price'] ['SaleID', 'name', 'bodyType', 'fuelType', 'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'seller', 'offerType', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14', 'train', 'used_time', 'city', 'brand_amount', 'brand_price_average', 'brand_price_max', 'brand_price_median', 'brand_price_min', 'brand_price_std', 'brand_price_sum', 'power_bin'] #train_x.head() train_y.head() 0 1850.0 1 6222.0 2 5200.0 3 8000.0 4 3500.0 Name: price, dtype: float64 #1、简单建模,训练线性回归模型,查看截距与权重 from sklearn.linear_model import LinearRegression model = LinearRegression(normalize=True) model = model.fit(train_x, train_y) sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True) [('v_6', 3367064.341641952), ('v_8', 700675.5609398864), ('v_9', 170630.27723221222), ('v_7', 32322.661932025392), ('v_12', 20473.670796989394), ('v_3', 17868.07954151005), ('v_11', 11474.938996718518), ('v_13', 11261.764560017724), ('v_10', 2683.920090609242), ('gearbox', 881.8225039249613), ('fuelType', 363.90425072161565), ('bodyType', 189.60271012074494), ('city', 44.9497512052328), ('power', 28.55390161675131), ('brand_price_median', 0.5103728134078974), ('brand_price_std', 0.45036347092632434), ('brand_amount', 0.1488112039506708), ('brand_price_max', 0.0031910186703149753), ('SaleID', 5.3559899198567324e-05), ('seller', 2.4531036615371704e-06), ('train', 4.246830940246582e-07), ('offerType', -7.235445082187653e-06), ('brand_price_sum', -2.175006868187898e-05), ('name', -0.00029800127130847845), ('used_time', -0.0025158943328449923), ('brand_price_average', -0.40490484510113794), ('brand_price_min', -2.246775348688707), ('power_bin', -34.42064411726649), ('v_14', -274.7841180776088), ('kilometer', -372.897526660709), ('notRepairedDamage', -495.19038446298714), ('v_0', -2045.0549573540754), ('v_5', -11022.986240523212), ('v_4', -15121.731109858125), ('v_2', -26098.29992055678), ('v_1', -45556.189297264835)] from matplotlib import pyplot as plt subsample_index = np.random.randint(low=0, high=len(train_y),size=50)#随机抽取50个点验证 plt.scatter(train_x['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_x['v_9'][subsample_index], model.predict(train_x.loc[subsample_index]), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price is obvious different from true price') plt.show() The predicted price is obvious different from true price ![在这里插入图片描述](https://img-blog.csdnimg.cn/20200329134510981.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzk1OTI0OA==,size_16,color_FFFFFF,t_70)
import seaborn as sns print('It is clear to see the price shows a typical exponential distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y) plt.subplot(1,2,2) sns.distplot(train_y[train_y < train_y.quantile(0.9)]) #将长尾截断 It is clear to see the price shows a typical exponential distribution

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qR3hcGGy-1585460408912)(output_7_3.png)]

#对标签进行log(x+1)变换使其贴近于正态分布,加一是为了防止底数为0 train_y_ln = np.log(train_y+1) import seaborn as sns print('The transformed price seems like normal distribution') plt.figure(figsize=(15,5)) plt.subplot(1,2,1) sns.distplot(train_y_ln) plt.subplot(1,2,2) sns.distplot(train_y_ln[train_y_ln < train_y.quantile(0.9)]) The transformed price seems like normal distribution

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4cBRUryw-1585460408915)(output_8_3.png)]

model = model.fit(train_x, train_y_ln) print('intercept:'+str(model.intercept_)) sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True) intercept:18.75074946557562 [('v_9', 8.052409900567515), ('v_5', 5.7642365966517515), ('v_12', 1.6182081236790782), ('v_1', 1.479831058296809), ('v_11', 1.1669016563609707), ('v_13', 0.9404711296034489), ('v_7', 0.713727308356328), ('v_3', 0.6837875771083226), ('v_0', 0.008500518010020237), ('power_bin', 0.00849796930289155), ('gearbox', 0.00792237727832305), ('fuelType', 0.006684769706828705), ('bodyType', 0.004523520092702963), ('power', 0.0007161894205359341), ('brand_price_min', 3.334351114747353e-05), ('brand_amount', 2.8978797042768103e-06), ('brand_price_median', 1.2571172872977267e-06), ('brand_price_std', 6.65917636342063e-07), ('brand_price_max', 6.194956307515807e-07), ('brand_price_average', 5.999345965093302e-07), ('SaleID', 2.1194170039646528e-08), ('seller', 9.978862181014847e-11), ('train', 7.958078640513122e-13), ('brand_price_sum', -1.5126504215909907e-10), ('offerType', -2.547437816247111e-10), ('name', -7.01551258888878e-08), ('used_time', -4.122479372354066e-06), ('city', -0.002218782481042724), ('v_14', -0.004234223418128389), ('kilometer', -0.013835866226882864), ('notRepairedDamage', -0.27027942349845646), ('v_4', -0.8315701200995309), ('v_2', -0.9470842241621843), ('v_10', -1.6261466689779176), ('v_8', -40.34300748761737), ('v_6', -238.79036385507334)] plt.scatter(train_x['v_9'][subsample_index], train_y[subsample_index], color='black') plt.scatter(train_x['v_9'][subsample_index], np.exp(model.predict(train_x.loc[subsample_index])), color='blue') plt.xlabel('v_9') plt.ylabel('price') plt.legend(['True Price','Predicted Price'],loc='upper right') print('The predicted price seems normal after np.log transforming') plt.show() The predicted price seems normal after np.log transforming

在这里插入图片描述

#2、五折交叉验证 #训练集,评估集,测试集。拿出训练集的一部分出来作为评估集,来对训练集生成的参数进行测试 from sklearn.model_selection import cross_val_score from sklearn.metrics import mean_absolute_error, make_scorer def log_transfer(func): def wrapper(y, yhat): result = func(np.log(y),np.nan_to_num(np.log(yhat))) return result return wrapper scores = cross_val_score(model, X=train_x, y=train_y, verbose=1, cv=5, scoring=make_scorer(log_transfer(mean_absolute_error))) [Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.7s finished print('AVG:',np.mean(scores)) AVG: 1.3658023920313513 scores = pd.DataFrame(scores.reshape(1,-1)) scores.columns = ['cv' + str(x) for x in range(1, 6)] scores.index = ['MAE'] scores
cv1 cv2 cv3 cv4 cv5 MAE 1.348304 1.36349 1.380712 1.378401 1.358105 import numpy as np np.reshape(scores, [1,-1]) scores.columns = ['cv' + str(x) for x in range(1, 6)] scores.index = ['MAE'] scores
cv1 cv2 cv3 cv4 cv5 MAE 1.348304 1.36349 1.380712 1.378401 1.358105 #3、模拟真实业务 #采用时间顺序对数据集进行分割,选靠前时间的4/5作为训练集,靠后的1/5作为验证集 sample_feature = sample_feature.reset_index(drop=True) split_point = len(sample_feature)//5*4 train = sample_feature[:split_point].dropna() val = sample_feature[split_point:].dropna() train_x = train[continuous_feature_names] train_y_ln = np.log(train['price'] + 1) val_x = val[continuous_feature_names] val_y_ln = np.log(val['price'] + 1) model = model.fit(train_x, train_y_ln) print('intercept:'+str(model.intercept_)) mean_absolute_error(val_y_ln, model.predict(val_x)) intercept:17.26478651939934 0.1957766416421094 #4、绘制学习曲线 from sklearn.model_selection import learning_curve, validation_curve def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )): plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel('Training example') plt.ylabel('score') train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error)) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid()#区域 plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color='r', label="Training score") plt.plot(train_sizes, test_scores_mean,'o-',color="g", label="Cross-validation score") plt.legend(loc="best") return plt plot_learning_curve(LinearRegression(), 'Liner_model', train_x[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)

在这里插入图片描述

#模型调参 #1、通过线性回归,加入两种正则化方法,变成岭回归和Lasso回归 from sklearn.linear_model import LinearRegression from sklearn.linear_model import Ridge from sklearn.linear_model import Lasso train = sample_feature[continuous_feature_names + ['price']].dropna() train_X = train[continuous_feature_names] train_y = train['price'] train_y_ln = np.log(train_y + 1) #三种模型 result = {} models = [LinearRegression(), Ridge(), Lasso()] for model in models: model_name = str(model).split('(')[0] scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv=5, scoring=make_scorer(mean_absolute_error)) result[model_name] = scores print(model_name+' is finished') result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result LinearRegression is finished Ridge is finished Lasso is finished
LinearRegression Ridge Lasso cv1 0.190792 0.194832 0.383899 cv2 0.193758 0.197632 0.381894 cv3 0.194132 0.198123 0.384090 cv4 0.191825 0.195670 0.380526 cv5 0.195758 0.199676 0.383611 #线性回归 model = LinearRegression().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names) intercept:18.750750028424832

在这里插入图片描述

#岭回归 model = Ridge().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names) intercept:4.671709788130855

在这里插入图片描述

#LASSO回归 model = Lasso().fit(train_X, train_y_ln) print('intercept:'+ str(model.intercept_)) sns.barplot(abs(model.coef_), continuous_feature_names) intercept:8.67218477988307

在这里插入图片描述

#2、非线性回归 from sklearn.linear_model import LinearRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from xgboost.sklearn import XGBRegressor from lightgbm.sklearn import LGBMRegressor models = [LinearRegression(), DecisionTreeRegressor(), RandomForestRegressor(), GradientBoostingRegressor(), MLPRegressor(solver='lbfgs', max_iter=100), XGBRegressor(n_estimators = 100, objective='reg:squarederror'), LGBMRegressor(n_estimators = 100)] result = dict() for model in models: model_name = str(model).split('(')[0] scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)) result[model_name] = scores print(model_name + ' is finished') LinearRegression is finished DecisionTreeRegressor is finished RandomForestRegressor is finished GradientBoostingRegressor is finished MLPRegressor is finished XGBRegressor is finished LGBMRegressor is finished result = pd.DataFrame(result) result.index = ['cv' + str(x) for x in range(1, 6)] result
LinearRegression DecisionTreeRegressor RandomForestRegressor GradientBoostingRegressor MLPRegressor XGBRegressor LGBMRegressor cv1 0.190792 0.198679 0.140822 0.168900 285.562549 0.142367 0.141542 cv2 0.193758 0.193387 0.143273 0.171831 572.989841 0.140923 0.145501 cv3 0.194132 0.189258 0.142621 0.170875 300.496953 0.139393 0.143887 cv4 0.191825 0.190014 0.142087 0.169064 2114.730472 0.137492 0.142497 cv5 0.195758 0.204785 0.144554 0.174094 353.180810 0.143732 0.144852 #模型调参 objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair'] num_leaves = [3,5,10,15,20,40, 55] max_depth = [3,5,10,15,20,40, 55] bagging_fraction = [] feature_fraction = [] drop_rate = [] #1、贪心算法 best_obj = dict() for obj in objective: model = LGBMRegressor(objective=obj) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_obj[obj] = score best_leaves = dict() for leaves in num_leaves: model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_leaves[leaves] = score best_depth = dict() for depth in max_depth: model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0], max_depth=depth) score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) best_depth[depth] = score sns.barplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])

在这里插入图片描述

#grid-search调参(穷举搜索) from sklearn.model_selection import GridSearchCV parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth} model = LGBMRegressor() clf = GridSearchCV(model, parameters, cv=5) clf = clf.fit(train_X, train_y) clf.best_params_ {'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'} model = LGBMRegressor(objective='regression', num_leaves=55, max_depth=15) np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))) 0.13754980533444577 #贝叶斯调参 from bayes_opt import BayesianOptimization def rf_cv(num_leaves, max_depth, subsample, min_child_samples): val = cross_val_score( LGBMRegressor(objective = 'regression_l1', num_leaves=int(num_leaves), max_depth=int(max_depth), subsample = subsample, min_child_samples = int(min_child_samples) ), X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error) ).mean() return 1 - val rf_bo = BayesianOptimization( rf_cv, { 'num_leaves': (2, 100), 'max_depth': (2, 100), 'subsample': (0.1, 1), 'min_child_samples' : (2, 100) } ) rf_bo.maximize() | iter | target | max_depth | min_ch... | num_le... | subsample | ------------------------------------------------------------------------- | [0m 1 [0m | [0m 0.8625 [0m | [0m 98.27 [0m | [0m 16.21 [0m | [0m 46.74 [0m | [0m 0.5154 [0m | | [95m 2 [0m | [95m 0.867 [0m | [95m 60.17 [0m | [95m 24.19 [0m | [95m 73.85 [0m | [95m 0.5303 [0m | | [95m 3 [0m | [95m 0.8678 [0m | [95m 20.73 [0m | [95m 49.05 [0m | [95m 79.91 [0m | [95m 0.9991 [0m | | [95m 4 [0m | [95m 0.8686 [0m | [95m 11.38 [0m | [95m 33.55 [0m | [95m 96.73 [0m | [95m 0.106 [0m | | [0m 5 [0m | [0m 0.8583 [0m | [0m 28.24 [0m | [0m 88.14 [0m | [0m 32.07 [0m | [0m 0.54 [0m | | [95m 6 [0m | [95m 0.8692 [0m | [95m 99.18 [0m | [95m 99.2 [0m | [95m 99.89 [0m | [95m 0.5816 [0m | | [0m 7 [0m | [0m 0.8692 [0m | [0m 98.37 [0m | [0m 3.355 [0m | [0m 98.11 [0m | [0m 0.3583 [0m | | [0m 8 [0m | [0m 0.8505 [0m | [0m 5.726 [0m | [0m 3.353 [0m | [0m 99.91 [0m | [0m 0.9506 [0m | | [0m 9 [0m | [0m 0.8398 [0m | [0m 4.988 [0m | [0m 98.7 [0m | [0m 95.51 [0m | [0m 0.2637 [0m | | [0m 10 [0m | [0m 0.802 [0m | [0m 98.82 [0m | [0m 96.37 [0m | [0m 3.977 [0m | [0m 0.7117 [0m | | [0m 11 [0m | [0m 0.7719 [0m | [0m 6.261 [0m | [0m 12.23 [0m | [0m 2.926 [0m | [0m 0.9965 [0m | | [0m 12 [0m | [0m 0.8668 [0m | [0m 56.81 [0m | [0m 23.78 [0m | [0m 71.71 [0m | [0m 0.1635 [0m | | [0m 13 [0m | [0m 0.8684 [0m | [0m 99.3 [0m | [0m 46.5 [0m | [0m 86.75 [0m | [0m 0.1027 [0m | | [95m 14 [0m | [95m 0.8693 [0m | [95m 51.32 [0m | [95m 77.08 [0m | [95m 99.54 [0m | [95m 0.1632 [0m | | [0m 15 [0m | [0m 0.8678 [0m | [0m 17.64 [0m | [0m 47.26 [0m | [0m 78.37 [0m | [0m 0.5125 [0m | | [0m 16 [0m | [0m 0.8654 [0m | [0m 67.56 [0m | [0m 99.3 [0m | [0m 62.61 [0m | [0m 0.1608 [0m | | [95m 17 [0m | [95m 0.8694 [0m | [95m 48.5 [0m | [95m 43.38 [0m | [95m 99.52 [0m | [95m 0.1868 [0m | | [0m 18 [0m | [0m 0.8632 [0m | [0m 57.29 [0m | [0m 61.38 [0m | [0m 49.45 [0m | [0m 0.2046 [0m | | [0m 19 [0m | [0m 0.8666 [0m | [0m 95.77 [0m | [0m 3.698 [0m | [0m 71.83 [0m | [0m 0.5748 [0m | | [0m 20 [0m | [0m 0.8689 [0m | [0m 85.61 [0m | [0m 76.58 [0m | [0m 98.76 [0m | [0m 0.6544 [0m | | [0m 21 [0m | [0m 0.8692 [0m | [0m 70.03 [0m | [0m 98.23 [0m | [0m 99.73 [0m | [0m 0.3661 [0m | | [0m 22 [0m | [0m 0.8692 [0m | [0m 97.84 [0m | [0m 27.73 [0m | [0m 99.84 [0m | [0m 0.212 [0m | | [0m 23 [0m | [0m 0.8678 [0m | [0m 53.85 [0m | [0m 61.55 [0m | [0m 80.23 [0m | [0m 0.1136 [0m | | [0m 24 [0m | [0m 0.8691 [0m | [0m 51.15 [0m | [0m 4.563 [0m | [0m 99.3 [0m | [0m 0.1271 [0m | | [0m 25 [0m | [0m 0.8694 [0m | [0m 35.05 [0m | [0m 25.77 [0m | [0m 99.39 [0m | [0m 0.8209 [0m | | [0m 26 [0m | [0m 0.8692 [0m | [0m 72.39 [0m | [0m 20.52 [0m | [0m 99.82 [0m | [0m 0.3174 [0m | | [0m 27 [0m | [0m 0.8691 [0m | [0m 99.66 [0m | [0m 71.71 [0m | [0m 99.5 [0m | [0m 0.2219 [0m | | [0m 28 [0m | [0m 0.8693 [0m | [0m 25.56 [0m | [0m 42.44 [0m | [0m 99.05 [0m | [0m 0.1066 [0m | | [0m 29 [0m | [0m 0.8664 [0m | [0m 33.56 [0m | [0m 81.97 [0m | [0m 69.32 [0m | [0m 0.2377 [0m | | [0m 30 [0m | [0m 0.868 [0m | [0m 87.97 [0m | [0m 93.77 [0m | [0m 85.64 [0m | [0m 0.1569 [0m | ========================================================================= 1 - rf_bo.max['target'] 0.1305975267548991 plt.figure(figsize=(13,5)) sns.barplot(x=['0_origin','1_log_transfer','2_L1_&_L2','3_change_model','4_parameter_turning'], y=[1.36 ,0.19, 0.19, 0.14, 0.13])

在这里插入图片描述


作者:北海星



调参 数据

需要 登录 后方可回复, 如果你还没有账号请 注册新账号