[Python标准库]decimal——定点数和浮点数的数学运算
作用:使用定点数和浮点数的小数运算。
Python 版本:2.4 及以后版本
decimal 模块实现了定点和浮点算术运算符,使用的是大多数人所熟悉的模型,而不是程序员熟悉的模型,即大多数计算机硬件实现的 IEEE 浮点数运算。Decimal 实例可以准确地表示任何数,对其上取整或下取整,还可以对有效数字个数加以限制。
Decimal
小数值表示为 Decimal 类的实例。构造函数取一个整数或字符串作为参数。使用浮点数创建 Decimal 之前,可以先将浮点数转换为一个字符串,使调用者能够显式地处理值得位数,倘若使用硬件浮点数表示则无法准确地表述。另外,利用类方法 from_float()
可以转换为精确的小数表示。
import decimal
fmt = '{0:<25} {1:<25}'
print fmt.format('Input', 'Output')
print fmt.format('-' * 25, '-' * 25)
# Integer
print fmt.format(5, decimal.Decimal(5))
# String
print fmt.format('3.14', decimal.Decimal('3.14'))
# Float
f = 0.1
print fmt.format(repr(f), decimal.Decimal(str(f)))
print fmt.format('%.23g' % f, str(decimal.Decimal.from_float(f))[:25])
浮点数值 0.1 并不表示为一个精确的二进制值,所以 float 的表示与 Decimal 值不同。在这个输出中它被截断为 25 个字符。
Decimal 还可以由元组创建,其中包含一个符号标志(0 表示正,1 表示负)、数字 tuple 以及一个整数指数。
import decimal
# Tuple
t = (1, (1, 1), -2)
print 'Input :', t
print 'Decimal:', decimal.Decimal(t)
基于元组的表示创建时不太方便,不过它提供了一种可移植的方式,可以导出小数值而不会损失精度。tuple 形式可以在网络上传输,或者在不支持精确小数值得数据库中存储,以后再转回回 Decimal 实例。
算术运算
Decimal 重载了简单的算术运算符,所以可以采用内置数值类型同样的方式处理 Decimal 实例。
import decimal
a = decimal.Decimal('5.1')
b = decimal.Decimal('3.14')
c = 4
d = 3.14
print 'a =', repr(a)
print 'b =', repr(b)
print 'c =', repr(c)
print 'd =', repr(d)
print
print 'a + b =', a + b
print 'a - b =', a - b
print 'a * b =', a * b
print 'a / b =', a / b
print
print 'a + c =', a + c
print 'a - c =', a - c
print 'a * c =', a * c
print 'a / c =', a / c
print
print 'a + d =',
try:
print a + d
except TypeError, e:
print e
Decimal 运算符还接受整数参数,不过浮点数值必须转换为 Decimal 实例。
除了基本算术运算,Decimal 还包括一些方法来查找以 10 为底的对数和自然对数。log10() 和 ln() 返回的值都是 Decimal 实例,所以可以与其他值一样直接在公式中使用。
特殊值
除了期望的数字值,Decimal 还可以表示很多特殊值,包括正负无穷大值、“不是一个数”(NaN)和 0。
import decimal
for value in [ 'Infinity', 'NaN', '0' ]:
print decimal.Decimal(value), decimal.Decimal('-' + value)
print
# Math with infinity
print 'Infinity + 1:', (decimal.Decimal('Infinity') + 1)
print '-Infinity + 1:', (decimal.Decimal('-Infinity') + 1)
# Print comparing NaN
print decimal.Decimal('NaN') == decimal.Decimal('Infinity')
print decimal.Decimal('NaN') != decimal.Decimal(1)
与无穷大值相加会返回另一个无穷大值。与 NaN 比较相等性总会返回 false,而比较不等性总会返回 true。与 NaN 比较大小来确定排序顺序没有明确定义,这会导致一个错误。
上下文
到目前为止,前面的例子使用的都是 decimal 模块的默认行为。还可以使用一个上下文(context)覆盖某些设置,如保持精度、如何完成取整、错误处理等等。上下文可以应用于一个线程中的所有 Decimal 实例,或者局部应用于一个小代码区。
1. 当前上下文
要获取当前全局上下文,可以使用 getcontext()。
import decimal
import pprint
context = decimal.getcontext()
print 'Emax =', context.Emax
print 'Emin =', context.Emin
print 'capitals =', context.capitals
print 'prec =', context.prec
print 'rounding =', context.rounding
print 'flags ='
pprint.pprint(context.flags)
print 'traps ='
pprint.pprint(context.traps)
这个示例脚本显示了 Context 的公共属性。
2. 精度
上下文的 prec 属性控制着作为算术运算结果所创建的新值的精度。字面量值会按这个属性保持精度。
import decimal
d = decimal.Decimal('0.123456')
for i in range(4):
decimal.getcontext().prec = i
print i, ':', d, d * 1
要改变精度,可以直接为这个属性赋一个新值。
3. 取整
取整有多种选择,以保证值在所需精度范围内。
•ROUND_CEILING 总是趋向于无穷大向上取整。
•ROUND_DOWN 总是趋向 0 取整。
•ROUND_FLOOR 总是趋向负无穷大向下取整。
•ROUND_HALF_DOWN 如果最后一个有效数字大于或等于 5 则朝 0 反方向取整;否则,趋向 0 取整。
•ROUND_HALF_EVEN 类似于 ROUND_HALF_DOWN,不过,如果最后一个有效数字值为 5,则会检查前一位。偶数值会导致结果向下取整,奇数值导致结果向上取整。
•ROUND_HALF_UP 类似于 ROUND_HALF_DOWN,不过如果最后一位有效数字为 5,值会朝 0 的反方向取整。
•ROUND_UP 朝 0 的反方向取整。
•ROUND_05UP 如果最后一位是 0 或 5,则朝 0 的反方向取整;否则向 0 取整。
import decimal
context = decimal.getcontext()
ROUNDING_MODES = [
'ROUND_CEILING',
'ROUND_DOWN',
'ROUND_FLOOR',
'ROUND_HALF_DOWN',
'ROUND_HALF_EVEN',
'ROUND_HALF_UP',
'ROUND_UP',
'ROUND_05UP',
]
header_fmt = '{:10} ' + ' '.join(['{:^8}'] * 6)
print header_fmt.format(' ',
'1/8 (1)', '-1/8 (1)',
'1/8 (2)', '-1/8 (2)',
'1/8 (3)', '-1/8 (3)',
)
for rounding_mode in ROUNDING_MODES:
print '{0:10}'.format(rounding_mode.partition('_')[-1]),
for precision in [ 1, 2, 3 ]:
context.prec = precision
context.rounding = getattr(decimal, rounding_mode)
value = decimal.Decimal(1) / decimal.Decimal(8)
print '{0:^8}'.format(value),
value = decimal.Decimal(-1) / decimal.Decimal(8)
print '{0:^8}'.format(value),
print
这个程序显示了使用不同算法将同一个值取整为不同精度的效果。
4. 局部上下文
使用 Python 2.5 或以后版本时,可以使用 with 语句对一个代码块应用上下文。
import decimal
with decimal.localcontext() as c:
c.prec = 2
print 'Local precision:', c.prec
print '3.14 / 3 =', (decimal.Decimal('3.14') / 3)
print
print 'Default precision:', decimal.getcontext().prec
print '3.14 / 3 =', (decimal.Decimal('3.14') / 3)
Context 支持 with 使用的上下文管理器 API,所以这个设置只在块内应用。
5. 各实例上下文
上下文还可以用来构造 Decimal 实例,然后可以从这个上下文继承精度和转换的取整参数。
import decimal
# Set up a context with limited precision
c = decimal.getcontext().copy()
c.prec = 3
# Create our constant
pi = c.create_decimal('3.1415')
# The constant value is rounded off
print 'PI :', pi
# The result of using the constant uses the global context
print 'RESULT:', decimal.Decimal('2.01') * pi
这样一来,应用就可以区别于用户数据精度而另外选择常量值精度。
6. 线程
“全局”上下文实际上是线程本地上下文,所以完全可以使用不同的值分别配置各个线程。
import decimal
import threading
from Queue import PriorityQueue
class Multiplier(threading.Thread):
def __init__(self, a, b, prec, q):
self.a = a
self.b = b
self.prec = prec
self.q = q
threading.Thread.__init__(self)
def run(self):
c = decimal.getcontext().copy()
c.prec = self.prec
decimal.setcontext(c)
self.q.put( (self.prec, a * b) )
return
a = decimal.Decimal('3.14')
b = decimal.Decimal('1.234')
# A PriorityQueue will return values sorted by precision, no matter
# what order the threads finish.
q = PriorityQueue()
threads = [ Multiplier(a, b, i, q) for i in range(1, 6) ]
for t in threads:
t.start()
for t in threads:
t.join()
for i in range(5):
prec, value = q.get()
print prec, '\t', value
这个例子使用指定的值创建一个新的上下文,然后安装到各个线程中。
总结
以上所述是小编给大家介绍的python中的decimal类型转换实例详解,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对软件开发网网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!