有如下数据
a.txt
hello tom
hello jim
hello kitty
hello rose
b.txt
hello jerry
hello jim
hello kitty
hello jack
c.txt
hello jerry
hello java
hello c++
hello c++
需要输出如下格式:
c++ c.txt-->2
hello a.txt-->4 b.txt-->4 c.txt-->4
jack b.txt-->1
java c.txt-->1
jerry b.txt-->1 c.txt-->1
jim a.txt-->1 b.txt-->1
kitty a.txt-->1 b.txt-->1
rose a.txt-->1
tom a.txt-->1
思路
1、先写一个mr程序:统计出每个单词在每个文件中的总次数
hello-a.txt 4
hello-b.txt 4
hello-c.txt 4
java-c.txt 1
jerry-b.txt 1
jerry-c.txt 1
要点1:map方法中,如何获取所处理的这一行数据所在的文件名?
worker在调map方法时,会传入一个context,而context中包含了这个worker所读取的数据切片信息,而切片信息又包含这个切片所在的文件信息
那么,就可以在map中:
FileSplit split = context.getInputSplit();
String fileName = split.getpath().getName();
2、然后在写一个mr程序,读取上述结果数据:
map: 根据-切,以单词做key,后面一段作为value
reduce: 拼接values里面的每一段,以单词做key,拼接结果做value,输出即可
package com.bigdata.mapreduce.index;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class IndexStepOne {
public static class IndexStepOneMapper extends Mapper {
// 产生
@Override
protected void map(LongWritable key, Text value, Mapper.Context context)
throws IOException, InterruptedException {
// 从输入切片信息中获取当前正在处理的一行数据所属的文件
FileSplit inputSplit = (FileSplit) context.getInputSplit();
String fileName = inputSplit.getPath().getName();
String[] words = value.toString().split(" ");
for (String word : words) {
// 将"单词-文件名"作为key,1作为value,输出
context.write(new Text(word + "-" + fileName), new IntWritable(1));
}
}
}
public static class IndexStepOneReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values,
Reducer.Context context) throws IOException, InterruptedException {
int count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(IndexStepOne.class);
job.setMapperClass(IndexStepOneMapper.class);
job.setReducerClass(IndexStepOneReducer.class);
job.setNumReduceTasks(1);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path("D:\\mrdata\\index\\input"));
FileOutputFormat.setOutputPath(job, new Path("D:\\mrdata\\index\\output"));
job.waitForCompletion(true);
}
}
输出结果如下:
c++-c.txt 2
hello-a.txt 4
hello-b.txt 4
hello-c.txt 4
jack-b.txt 1
java-c.txt 1
jerry-b.txt 1
jerry-c.txt 1
jim-a.txt 1
jim-b.txt 1
kitty-a.txt 1
kitty-b.txt 1
rose-a.txt 1
tom-a.txt 1
第二个mr程序根据第一个默认程序计算出的数据进行切割、拼接
package com.bigdata.mapreduce.index;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class IndexStepTwo {
public static class IndexStepTwoMapper extends Mapper {
//组合数据: 4> 2>
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] split = value.toString().split("-");
context.write(new Text(split[0]), new Text(split[1].replaceAll("\t", "-->")));
}
}
public static class IndexStepTwoReducer extends Reducer {
@Override
protected void reduce(Text key, Iterable values,
Context context) throws IOException, InterruptedException {
StringBuilder sb = new StringBuilder();
for (Text value : values) {
sb.append(value.toString()).append("\t");
}
context.write(key, new Text(sb.toString()));
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(IndexStepTwo.class);
job.setMapperClass(IndexStepTwoMapper.class);
job.setReducerClass(IndexStepTwoReducer.class);
job.setNumReduceTasks(1);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.setInputPaths(job, new Path("D:\\mrdata\\index\\output"));
FileOutputFormat.setOutputPath(job, new Path("D:\\mrdata\\index\\output1"));
job.waitForCompletion(true);
}
}
输出结果如下
c++ c.txt-->2
hello a.txt-->4 b.txt-->4 c.txt-->4
jack b.txt-->1
java c.txt-->1
jerry b.txt-->1 c.txt-->1
jim a.txt-->1 b.txt-->1
kitty a.txt-->1 b.txt-->1
rose a.txt-->1
tom a.txt-->1