引言
通常,在 Python 中写循环(特别是多重循环)非常的慢,在文章 //www.jb51.net/article/133807.htm中,我们的元胞自动机的状态更新函数 update_state 使用了两重循环,所以我们尝试用 Cython 重构该方法。
代码
我们在同文件夹下新建一个 update.pyx 文件,写入如下内容
import numpy as np
cimport numpy as np
cimport cython
DTYPE = np.float
ctypedef np.float_t DTYPE_t
def update_state(np.ndarray[DTYPE_t, ndim=2] cells):
return update_state_c(cells)
@cython.boundscheck(False)
@cython.wraparound(False)
cdef np.ndarray[DTYPE_t, ndim=2] update_state_c(np.ndarray[DTYPE_t, ndim=2] cells):
"""更新一次状态"""
cdef unsigned int i
cdef unsigned int j
cdef np.ndarray[DTYPE_t, ndim=2] buf = np.zeros((cells.shape[0], cells.shape[1]), dtype=DTYPE)
cdef DTYPE_t neighbor_num
for i in range(1, cells.shape[0] - 1):
for j in range(1, cells.shape[0] - 1):
# 计算该细胞周围的存活细胞数
neighbor_num = cells[i, j-1] + cells[i, j+1] + cells[i+1, j] + cells[i-1, j] +\
cells[i-1, j-1] + cells[i-1, j+1] +\
cells[i+1, j-1] + cells[i+1, j+1]
if neighbor_num == 3:
buf[i, j] = 1
elif neighbor_num == 2:
buf[i, j] = cells[i, j]
else:
buf[i, j] = 0
return buf
update_state_c 函数上的两个装饰器是用来关闭 Cython 的边界检查的。
在同文件下新建一个 setup.py 文件
import numpy as np
from distutils.core import setup
from Cython.Build import cythonize
setup(
name="Cython Update State",
ext_modules=cythonize("update.pyx"),
include_dirs=[np.get_include()]
)
因为在 Cython 文件中使用了 NumPy 的头文件,所以我们需要在 setup.py 将其包含进去。
执行 python setup.py build_ext --inplace 后,同文件夹下会生成一个 update.cp36-win_amd64.pyd 的文件,这就是编译好的 C 扩展。
我们修改原始的代码,首先在文件头部加入 import update as cupdate,然后修改更新方法如下
def update_state(self):
"""更新一次状态"""
self.cells = cupdate.update_state(self.cells)
self.timer += 1
将原方法名就改为 update_state_py 即可,运行脚本,无异常。
测速
我们编写一个方法来测试一下使用 Cython 可以带来多少速度的提升
def test_time():
import time
game = GameOfLife(cells_shape=(60, 60))
t1 = time.time()
for _ in range(300):
game.update_state()
t2 = time.time()
print("Cython Use Time:", t2 - t1)
del game
game = GameOfLife(cells_shape=(60, 60))
t1 = time.time()
for _ in range(300):
game.update_state_py()
t2 = time.time()
print("Native Python Use Time:", t2 - t1)
运行该方法,在我的电脑上输出如下
Cython Use Time: 0.007000446319580078
Native Python Use Time: 4.342248439788818
速度提升了 600 多倍。
您可能感兴趣的文章:用Cython加速Python到“起飞”(推荐)