Python+OpenCV图像边缘检测四种实现方法

Vidonia ·
更新时间:2024-11-14
· 1688 次阅读

目录

1.Sobel算子

2.Schaar算子(更能体现细节)

3.Laplacian算子(基于零穿越的,二阶导数的0值点)

4.Canny边缘检测(被认为是最优的边缘检测算法)

总结

import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 设置兼容中文 plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] D:\Anaconda\AZWZ\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs: D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.NOIJJG62EMASZI6NYURL6JBKM4EVBGM7.gfortran-win_amd64.dll D:\Anaconda\AZWZ\lib\site-packages\numpy\.libs\libopenblas.WCDJNK7YVMPZQ2ME2ZZHJJRJ3JIKNDB7.gfortran-win_amd64.dll warnings.warn("loaded more than 1 DLL from .libs:\n%s" % horse = cv.imread('img/horse.jpg',0) plt.imshow(horse,cmap=plt.cm.gray) plt.imshow(horse,cmap=plt.cm.gray)

1.Sobel算子 # 1,0 代表沿x方向做sobel算子 x = cv.Sobel(horse,cv.CV_16S,1,0) # 0,1 代表沿y方向做sobel算子 y = cv.Sobel(horse,cv.CV_16S,0,1) # 格式转换 absx = cv.convertScaleAbs(x) absy = cv.convertScaleAbs(y) # 边缘检测结果 res = cv.addWeighted(absx,0.5,absy,0.5,0) plt.figure(figsize=(20,20)) plt.subplot(1,2,1) m1 = plt.imshow(horse,cmap=plt.cm.gray) plt.title("原图") plt.subplot(1,2,2) m2 = plt.imshow(res,cmap=plt.cm.gray) plt.title("Sobel算子边缘检测") Text(0.5, 1.0, 'Sobel算子边缘检测')

2.Schaar算子(更能体现细节) # 1,0 代表沿x方向做sobel算子 x = cv.Sobel(horse,cv.CV_16S,1,0,ksize=-1) # 0,1 代表沿y方向做sobel算子 y = cv.Sobel(horse,cv.CV_16S,0,1,ksize=-1) # 格式转换 absx = cv.convertScaleAbs(x) absy = cv.convertScaleAbs(y) # 边缘检测结果 res = cv.addWeighted(absx,0.5,absy,0.5,0) plt.figure(figsize=(20,20)) plt.subplot(1,2,1) m1 = plt.imshow(horse,cmap=plt.cm.gray) plt.title("原图") plt.subplot(1,2,2) m2 = plt.imshow(res,cmap=plt.cm.gray) plt.title("Schaar算子边缘检测") Text(0.5, 1.0, 'Schaar算子边缘检测')

3.Laplacian算子(基于零穿越的,二阶导数的0值点) res = cv.Laplacian(horse,cv.CV_16S) res = cv.convertScaleAbs(res) plt.figure(figsize=(20,20)) plt.subplot(1,2,1) m1 = plt.imshow(horse,cmap=plt.cm.gray) plt.title("原图") plt.subplot(1,2,2) m2 = plt.imshow(res,cmap=plt.cm.gray) plt.title("Laplacian算子边缘检测") Text(0.5, 1.0, 'Laplacian算子边缘检测')

4.Canny边缘检测(被认为是最优的边缘检测算法)

res = cv.Canny(horse,0,100) # res = cv.convertScaleAbs(res) Canny边缘检测是一种二值检测,不需要转换格式这一个步骤 plt.figure(figsize=(20,20)) plt.subplot(1,2,1) m1 = plt.imshow(horse,cmap=plt.cm.gray) plt.title("原图") plt.subplot(1,2,2) m2 = plt.imshow(res,cmap=plt.cm.gray) plt.title("Canny边缘检测") Text(0.5, 1.0, 'Canny边缘检测')

总结

以上就是Python+OpenCV 图像边缘检测四种实现方法的详细内容,更多关于Python OpenCV图像边缘检测的资料请关注软件开发网其它相关文章!



边缘检测 方法 opencv Python

需要 登录 后方可回复, 如果你还没有账号请 注册新账号